演化数据流的行为序列预测

Sheikh M. Qumruzzaman, L. Khan, B. Thuraisingham
{"title":"演化数据流的行为序列预测","authors":"Sheikh M. Qumruzzaman, L. Khan, B. Thuraisingham","doi":"10.1109/IRI.2013.6642509","DOIUrl":null,"url":null,"abstract":"Behavioral pattern prediction has many applications, ranging from consumer buying behavior analysis, web surfing prediction to network attack prediction. The traditional behavioral prediction technique works mainly on a fixed dataset. But recent advances in digital technology generates a huge amount of data which contributes to data stream. Data evolves over time due to the concept drift. Stream-based classification also needs to evolve over time. Our goal is not to predict a single action/behavior, but a sequence of actions that can occur later depending on the previous actions. We call this problem “Behavioral Pattern Extrapolation”. In our research, we exploited a stream mining based technique along with Markovian model, where we used an incremental and ensemble based technique for predicting a set of future actions. We have experimented using a number of benchmark datasets and shown the effectiveness of our approach.","PeriodicalId":418492,"journal":{"name":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Behavioral sequence prediction for evolving data stream\",\"authors\":\"Sheikh M. Qumruzzaman, L. Khan, B. Thuraisingham\",\"doi\":\"10.1109/IRI.2013.6642509\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Behavioral pattern prediction has many applications, ranging from consumer buying behavior analysis, web surfing prediction to network attack prediction. The traditional behavioral prediction technique works mainly on a fixed dataset. But recent advances in digital technology generates a huge amount of data which contributes to data stream. Data evolves over time due to the concept drift. Stream-based classification also needs to evolve over time. Our goal is not to predict a single action/behavior, but a sequence of actions that can occur later depending on the previous actions. We call this problem “Behavioral Pattern Extrapolation”. In our research, we exploited a stream mining based technique along with Markovian model, where we used an incremental and ensemble based technique for predicting a set of future actions. We have experimented using a number of benchmark datasets and shown the effectiveness of our approach.\",\"PeriodicalId\":418492,\"journal\":{\"name\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRI.2013.6642509\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE 14th International Conference on Information Reuse & Integration (IRI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRI.2013.6642509","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

行为模式预测有很多应用,从消费者购买行为分析、网页浏览预测到网络攻击预测。传统的行为预测技术主要在固定的数据集上工作。但最近数字技术的进步产生了大量的数据,这有助于数据流。由于概念漂移,数据会随着时间的推移而演变。基于流的分类也需要随着时间的推移而发展。我们的目标不是预测单个动作/行为,而是根据之前的动作预测随后可能发生的一系列动作。我们称这个问题为“行为模式外推”。在我们的研究中,我们利用了基于流挖掘的技术以及马尔可夫模型,其中我们使用了基于增量和集成的技术来预测一组未来的动作。我们已经使用许多基准数据集进行了实验,并证明了我们的方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Behavioral sequence prediction for evolving data stream
Behavioral pattern prediction has many applications, ranging from consumer buying behavior analysis, web surfing prediction to network attack prediction. The traditional behavioral prediction technique works mainly on a fixed dataset. But recent advances in digital technology generates a huge amount of data which contributes to data stream. Data evolves over time due to the concept drift. Stream-based classification also needs to evolve over time. Our goal is not to predict a single action/behavior, but a sequence of actions that can occur later depending on the previous actions. We call this problem “Behavioral Pattern Extrapolation”. In our research, we exploited a stream mining based technique along with Markovian model, where we used an incremental and ensemble based technique for predicting a set of future actions. We have experimented using a number of benchmark datasets and shown the effectiveness of our approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信