V. Katkovnik, I. Shevkunov, D. Claus, G. Pedrini, K. Egiazarian
{"title":"基于SVD图像子空间去噪的高光谱相位成像","authors":"V. Katkovnik, I. Shevkunov, D. Claus, G. Pedrini, K. Egiazarian","doi":"10.1364/DH.2019.W1B.2","DOIUrl":null,"url":null,"abstract":"We propose a modified denoising algorithm for hyperspectral data. The algorithm is based on a complex domain block-matching 3D filter, on estimation of the noise correlation matrix and on dimension reduction of the Singular Value Decomposition (SVD) eigenspace.","PeriodicalId":448778,"journal":{"name":"Digital Holography and Three-Dimensional Imaging 2019","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Hyperspectral phase imaging with denoising in SVD image subspace\",\"authors\":\"V. Katkovnik, I. Shevkunov, D. Claus, G. Pedrini, K. Egiazarian\",\"doi\":\"10.1364/DH.2019.W1B.2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a modified denoising algorithm for hyperspectral data. The algorithm is based on a complex domain block-matching 3D filter, on estimation of the noise correlation matrix and on dimension reduction of the Singular Value Decomposition (SVD) eigenspace.\",\"PeriodicalId\":448778,\"journal\":{\"name\":\"Digital Holography and Three-Dimensional Imaging 2019\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Digital Holography and Three-Dimensional Imaging 2019\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1364/DH.2019.W1B.2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Digital Holography and Three-Dimensional Imaging 2019","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/DH.2019.W1B.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Hyperspectral phase imaging with denoising in SVD image subspace
We propose a modified denoising algorithm for hyperspectral data. The algorithm is based on a complex domain block-matching 3D filter, on estimation of the noise correlation matrix and on dimension reduction of the Singular Value Decomposition (SVD) eigenspace.