格拉斯曼流形上的马氏距离及其在脑信号处理中的应用

Y. Washizawa, S. Hotta
{"title":"格拉斯曼流形上的马氏距离及其在脑信号处理中的应用","authors":"Y. Washizawa, S. Hotta","doi":"10.1109/MLSP.2012.6349723","DOIUrl":null,"url":null,"abstract":"Multi-dimensional data such as image patterns, image sequences, and brain signals, are often given in the form of the variance-covariance matrices or their eigenspaces to represent their own variations. For example, in face or object recognition problems, variations due to illuminations, camera angles can be represented by eigenspaces. A set of the eigenspaces is called the Grassmann manifold, and simple distance measurements in the Grassmann manifold, such as the projection metric have been used in conventional researches. However, in linear spaces, if the distribution of patterns is not isotropic, statistical distances such as the Mahalanobis distance are reasonable, and their performances are higher than simple distances in many problems. In this paper, we introduce the Mahalanobis distance in the Grassmann manifolds. Two experimental results, an object recognition problem and a brain signal processing, demonstrate the advantages of the proposed distance measurement.","PeriodicalId":262601,"journal":{"name":"2012 IEEE International Workshop on Machine Learning for Signal Processing","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2012-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mahalanobis distance on Grassmann manifold and its application to brain signal processing\",\"authors\":\"Y. Washizawa, S. Hotta\",\"doi\":\"10.1109/MLSP.2012.6349723\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Multi-dimensional data such as image patterns, image sequences, and brain signals, are often given in the form of the variance-covariance matrices or their eigenspaces to represent their own variations. For example, in face or object recognition problems, variations due to illuminations, camera angles can be represented by eigenspaces. A set of the eigenspaces is called the Grassmann manifold, and simple distance measurements in the Grassmann manifold, such as the projection metric have been used in conventional researches. However, in linear spaces, if the distribution of patterns is not isotropic, statistical distances such as the Mahalanobis distance are reasonable, and their performances are higher than simple distances in many problems. In this paper, we introduce the Mahalanobis distance in the Grassmann manifolds. Two experimental results, an object recognition problem and a brain signal processing, demonstrate the advantages of the proposed distance measurement.\",\"PeriodicalId\":262601,\"journal\":{\"name\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2012-11-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE International Workshop on Machine Learning for Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MLSP.2012.6349723\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE International Workshop on Machine Learning for Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MLSP.2012.6349723","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

多维数据,如图像模式、图像序列和大脑信号,通常以方差-协方差矩阵或其特征空间的形式给出,以表示其自身的变化。例如,在人脸或物体识别问题中,由于光照、相机角度的变化可以用特征空间表示。一组特征空间被称为格拉斯曼流形,在格拉斯曼流形中简单的距离度量,如投影度量,已被用于传统的研究。然而,在线性空间中,如果模式的分布不是各向同性的,则统计距离(如马氏距离)是合理的,并且在许多问题中它们的性能高于简单距离。本文引入了格拉斯曼流形中的马氏距离。两个实验结果,一个目标识别问题和一个大脑信号处理,证明了所提出的距离测量的优势。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mahalanobis distance on Grassmann manifold and its application to brain signal processing
Multi-dimensional data such as image patterns, image sequences, and brain signals, are often given in the form of the variance-covariance matrices or their eigenspaces to represent their own variations. For example, in face or object recognition problems, variations due to illuminations, camera angles can be represented by eigenspaces. A set of the eigenspaces is called the Grassmann manifold, and simple distance measurements in the Grassmann manifold, such as the projection metric have been used in conventional researches. However, in linear spaces, if the distribution of patterns is not isotropic, statistical distances such as the Mahalanobis distance are reasonable, and their performances are higher than simple distances in many problems. In this paper, we introduce the Mahalanobis distance in the Grassmann manifolds. Two experimental results, an object recognition problem and a brain signal processing, demonstrate the advantages of the proposed distance measurement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信