异构制造作业车间分布式控制中的稳定故障自适应

V. Prabhu
{"title":"异构制造作业车间分布式控制中的稳定故障自适应","authors":"V. Prabhu","doi":"10.1109/TRA.2002.807552","DOIUrl":null,"url":null,"abstract":"In this paper, a control theoretic model is developed for analyzing the dynamics of distributed cooperative control systems for manufacturing job shops with multiple processing steps with parallel dissimilar machines in which parts control their release times autonomously. The model allows an arbitrary number of part types to be produced using an arbitrary number of machines with an arbitrary number of alternate routings. Conditions for global stability of the resulting distributed control system with nonlinearities are shown using results from Lyapunov stability theory. System stability is found to be robust to a variety of faults and disturbances that may be encountered in a manufacturing environment as long they are bounded in the mean. Feedback enables implicit adaptation to faults in real time, which allows the flexibility in the systems to be fully utilized to compensate for faults and disturbances. Numerical simulation experiments are used to illustrate the global stability and the distributed fault adaptation capability of the system without requiring explicit notification or compensation to conditions such as machine deterioration, multiple machine failures, and network communication delays. Simulation results for job shops with 2000 parts are also presented to illustrate the scalability of the approach.","PeriodicalId":161449,"journal":{"name":"IEEE Trans. Robotics Autom.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2003-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"30","resultStr":"{\"title\":\"Stable fault adaptation in distributed control of heterarchical manufacturing job shops\",\"authors\":\"V. Prabhu\",\"doi\":\"10.1109/TRA.2002.807552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a control theoretic model is developed for analyzing the dynamics of distributed cooperative control systems for manufacturing job shops with multiple processing steps with parallel dissimilar machines in which parts control their release times autonomously. The model allows an arbitrary number of part types to be produced using an arbitrary number of machines with an arbitrary number of alternate routings. Conditions for global stability of the resulting distributed control system with nonlinearities are shown using results from Lyapunov stability theory. System stability is found to be robust to a variety of faults and disturbances that may be encountered in a manufacturing environment as long they are bounded in the mean. Feedback enables implicit adaptation to faults in real time, which allows the flexibility in the systems to be fully utilized to compensate for faults and disturbances. Numerical simulation experiments are used to illustrate the global stability and the distributed fault adaptation capability of the system without requiring explicit notification or compensation to conditions such as machine deterioration, multiple machine failures, and network communication delays. Simulation results for job shops with 2000 parts are also presented to illustrate the scalability of the approach.\",\"PeriodicalId\":161449,\"journal\":{\"name\":\"IEEE Trans. Robotics Autom.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"30\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Trans. Robotics Autom.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TRA.2002.807552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Trans. Robotics Autom.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TRA.2002.807552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 30

摘要

本文建立了一种控制理论模型,用于分析具有多个加工步骤的制造作业车间的分布式协同控制系统的动力学问题。该模型允许使用任意数量的机器和任意数量的备选路线生产任意数量的零件类型。利用李雅普诺夫稳定性理论给出了非线性分布控制系统全局稳定的条件。我们发现,系统稳定性对制造环境中可能遇到的各种故障和干扰具有鲁棒性,只要它们在平均值中有界。反馈能够实时地对故障进行隐式适应,从而充分利用系统的灵活性来补偿故障和干扰。数值模拟实验用于说明系统的全局稳定性和分布式故障适应能力,而不需要对机器劣化、多机器故障和网络通信延迟等条件进行明确的通知或补偿。最后给出了包含2000个零件的作业车间的仿真结果,说明了该方法的可扩展性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Stable fault adaptation in distributed control of heterarchical manufacturing job shops
In this paper, a control theoretic model is developed for analyzing the dynamics of distributed cooperative control systems for manufacturing job shops with multiple processing steps with parallel dissimilar machines in which parts control their release times autonomously. The model allows an arbitrary number of part types to be produced using an arbitrary number of machines with an arbitrary number of alternate routings. Conditions for global stability of the resulting distributed control system with nonlinearities are shown using results from Lyapunov stability theory. System stability is found to be robust to a variety of faults and disturbances that may be encountered in a manufacturing environment as long they are bounded in the mean. Feedback enables implicit adaptation to faults in real time, which allows the flexibility in the systems to be fully utilized to compensate for faults and disturbances. Numerical simulation experiments are used to illustrate the global stability and the distributed fault adaptation capability of the system without requiring explicit notification or compensation to conditions such as machine deterioration, multiple machine failures, and network communication delays. Simulation results for job shops with 2000 parts are also presented to illustrate the scalability of the approach.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信