基于接近图和集值映射的鲁棒协调算法

J. Cortés
{"title":"基于接近图和集值映射的鲁棒协调算法","authors":"J. Cortés","doi":"10.1109/ACC.2006.1655323","DOIUrl":null,"url":null,"abstract":"This paper studies correctness and robustness properties of motion coordination algorithms with respect to link failures in the network topology. The technical approach relies on computational geometric tools such as proximity graphs, nondeterministic systems defined via set-valued maps and Lyapunov stability analysis. The manuscript provides two general results to help characterize the asymptotic behavior of spatially distributed coordination algorithms. These results are illustrated in rendezvous and flocking coordination algorithms","PeriodicalId":265903,"journal":{"name":"2006 American Control Conference","volume":"36 22 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Characterizing robust coordination algorithms via proximity graphs and set-valued maps\",\"authors\":\"J. Cortés\",\"doi\":\"10.1109/ACC.2006.1655323\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper studies correctness and robustness properties of motion coordination algorithms with respect to link failures in the network topology. The technical approach relies on computational geometric tools such as proximity graphs, nondeterministic systems defined via set-valued maps and Lyapunov stability analysis. The manuscript provides two general results to help characterize the asymptotic behavior of spatially distributed coordination algorithms. These results are illustrated in rendezvous and flocking coordination algorithms\",\"PeriodicalId\":265903,\"journal\":{\"name\":\"2006 American Control Conference\",\"volume\":\"36 22 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2006 American Control Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACC.2006.1655323\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2006 American Control Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACC.2006.1655323","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

本文研究了网络拓扑中链路故障情况下运动协调算法的正确性和鲁棒性。技术方法依赖于计算几何工具,如接近图,通过集值映射和李亚普诺夫稳定性分析定义的不确定性系统。该手稿提供了两个一般结果,以帮助表征空间分布协调算法的渐近行为。这些结果在交会和群集协调算法中得到了说明
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Characterizing robust coordination algorithms via proximity graphs and set-valued maps
This paper studies correctness and robustness properties of motion coordination algorithms with respect to link failures in the network topology. The technical approach relies on computational geometric tools such as proximity graphs, nondeterministic systems defined via set-valued maps and Lyapunov stability analysis. The manuscript provides two general results to help characterize the asymptotic behavior of spatially distributed coordination algorithms. These results are illustrated in rendezvous and flocking coordination algorithms
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信