耦合标量系统的位移凸性分析

Rafah El-Khatib, N. Macris, T. Richardson, R. Urbanke
{"title":"耦合标量系统的位移凸性分析","authors":"Rafah El-Khatib, N. Macris, T. Richardson, R. Urbanke","doi":"10.1109/ISIT.2014.6875248","DOIUrl":null,"url":null,"abstract":"Potential functionals have been introduced recently as an important tool for the analysis of coupled scalar systems (e.g. density evolution equations). In this contribution we investigate interesting properties of this potential. Using the tool of displacement convexity we show that, under mild assumptions on the system, the potential functional is displacement convex. Furthermore, we give the conditions on the system such that the potential is strictly displacement convex in which case the minimizer is unique.","PeriodicalId":127191,"journal":{"name":"2014 IEEE International Symposium on Information Theory","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-08-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Analysis of coupled scalar systems by displacement convexity\",\"authors\":\"Rafah El-Khatib, N. Macris, T. Richardson, R. Urbanke\",\"doi\":\"10.1109/ISIT.2014.6875248\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potential functionals have been introduced recently as an important tool for the analysis of coupled scalar systems (e.g. density evolution equations). In this contribution we investigate interesting properties of this potential. Using the tool of displacement convexity we show that, under mild assumptions on the system, the potential functional is displacement convex. Furthermore, we give the conditions on the system such that the potential is strictly displacement convex in which case the minimizer is unique.\",\"PeriodicalId\":127191,\"journal\":{\"name\":\"2014 IEEE International Symposium on Information Theory\",\"volume\":\"7 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-08-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Information Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISIT.2014.6875248\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Information Theory","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISIT.2014.6875248","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

势泛函最近被引入作为耦合标量系统(如密度演化方程)分析的重要工具。在这篇文章中,我们研究了这个势的有趣性质。利用位移凸性的工具,我们证明了在系统的温和假设下,势泛函是位移凸的。进一步,我们给出了系统的势是严格位移凸的条件,在这种情况下,最小值是唯一的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of coupled scalar systems by displacement convexity
Potential functionals have been introduced recently as an important tool for the analysis of coupled scalar systems (e.g. density evolution equations). In this contribution we investigate interesting properties of this potential. Using the tool of displacement convexity we show that, under mild assumptions on the system, the potential functional is displacement convex. Furthermore, we give the conditions on the system such that the potential is strictly displacement convex in which case the minimizer is unique.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信