用简单的图像传感器实时网络计算人群数量

Danny B. Yang, H. González-Baños, L. Guibas
{"title":"用简单的图像传感器实时网络计算人群数量","authors":"Danny B. Yang, H. González-Baños, L. Guibas","doi":"10.1109/ICCV.2003.1238325","DOIUrl":null,"url":null,"abstract":"Estimating the number of people in a crowded environment is a central task in civilian surveillance. Most vision-based counting techniques depend on detecting individuals in order to count, an unrealistic proposition in crowded settings. We propose an alternative approach that directly estimates the number of people. In our system, groups of image sensors segment foreground objects from the background, aggregate the resulting silhouettes over a network, and compute a planar projection of the scene's visual hull. We introduce a geometric algorithm that calculates bounds on the number of persons in each region of the projection, after phantom regions have been eliminated. The computational requirements scale well with the number of sensors and the number of people, and only limited amounts of data are transmitted over the network. Because of these properties, our system runs in real-time and can be deployed as an untethered wireless sensor network. We describe the major components of our system, and report preliminary experiments with our first prototype implementation.","PeriodicalId":131580,"journal":{"name":"Proceedings Ninth IEEE International Conference on Computer Vision","volume":"21 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"287","resultStr":"{\"title\":\"Counting people in crowds with a real-time network of simple image sensors\",\"authors\":\"Danny B. Yang, H. González-Baños, L. Guibas\",\"doi\":\"10.1109/ICCV.2003.1238325\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimating the number of people in a crowded environment is a central task in civilian surveillance. Most vision-based counting techniques depend on detecting individuals in order to count, an unrealistic proposition in crowded settings. We propose an alternative approach that directly estimates the number of people. In our system, groups of image sensors segment foreground objects from the background, aggregate the resulting silhouettes over a network, and compute a planar projection of the scene's visual hull. We introduce a geometric algorithm that calculates bounds on the number of persons in each region of the projection, after phantom regions have been eliminated. The computational requirements scale well with the number of sensors and the number of people, and only limited amounts of data are transmitted over the network. Because of these properties, our system runs in real-time and can be deployed as an untethered wireless sensor network. We describe the major components of our system, and report preliminary experiments with our first prototype implementation.\",\"PeriodicalId\":131580,\"journal\":{\"name\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"volume\":\"21 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"287\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings Ninth IEEE International Conference on Computer Vision\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCV.2003.1238325\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings Ninth IEEE International Conference on Computer Vision","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCV.2003.1238325","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 287

摘要

在民用监视中,估计拥挤环境中的人数是一项核心任务。大多数基于视觉的计数技术依赖于检测个体来计数,这在拥挤的环境中是不现实的。我们提出了另一种直接估计人数的方法。在我们的系统中,图像传感器组从背景中分割前景物体,在网络上聚合生成的轮廓,并计算场景视觉外壳的平面投影。我们引入了一种几何算法,该算法在消除幻象区域后计算投影中每个区域的人数界限。计算需求随传感器数量和人员数量的变化而变化,并且只有有限数量的数据通过网络传输。由于这些特性,我们的系统可以实时运行,并且可以部署为不受约束的无线传感器网络。我们描述了我们系统的主要组成部分,并报告了我们的第一个原型实现的初步实验。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Counting people in crowds with a real-time network of simple image sensors
Estimating the number of people in a crowded environment is a central task in civilian surveillance. Most vision-based counting techniques depend on detecting individuals in order to count, an unrealistic proposition in crowded settings. We propose an alternative approach that directly estimates the number of people. In our system, groups of image sensors segment foreground objects from the background, aggregate the resulting silhouettes over a network, and compute a planar projection of the scene's visual hull. We introduce a geometric algorithm that calculates bounds on the number of persons in each region of the projection, after phantom regions have been eliminated. The computational requirements scale well with the number of sensors and the number of people, and only limited amounts of data are transmitted over the network. Because of these properties, our system runs in real-time and can be deployed as an untethered wireless sensor network. We describe the major components of our system, and report preliminary experiments with our first prototype implementation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信