{"title":"压缩感知和实数线性代码","authors":"Fan Zhang, H. Pfister","doi":"10.1109/ITA.2008.4601055","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) is a relatively new area of signal processing and statistics that focuses on signal reconstruction from a small number of linear (e.g., dot product) measurements. In this paper, we analyze CS using tools from coding theory because CS can also be viewed as syndrome-based source coding of sparse vectors using linear codes over real numbers. While coding theory does not typically deal with codes over real numbers, there is actually a very close relationship between CS and error-correcting codes over large discrete alphabets. This connection leads naturally to new reconstruction methods and analysis. In some cases, the resulting methods provably require many fewer measurements than previous approaches.","PeriodicalId":345196,"journal":{"name":"2008 Information Theory and Applications Workshop","volume":"58 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"54","resultStr":"{\"title\":\"Compressed sensing and linear codes over real numbers\",\"authors\":\"Fan Zhang, H. Pfister\",\"doi\":\"10.1109/ITA.2008.4601055\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing (CS) is a relatively new area of signal processing and statistics that focuses on signal reconstruction from a small number of linear (e.g., dot product) measurements. In this paper, we analyze CS using tools from coding theory because CS can also be viewed as syndrome-based source coding of sparse vectors using linear codes over real numbers. While coding theory does not typically deal with codes over real numbers, there is actually a very close relationship between CS and error-correcting codes over large discrete alphabets. This connection leads naturally to new reconstruction methods and analysis. In some cases, the resulting methods provably require many fewer measurements than previous approaches.\",\"PeriodicalId\":345196,\"journal\":{\"name\":\"2008 Information Theory and Applications Workshop\",\"volume\":\"58 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-08-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"54\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Information Theory and Applications Workshop\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITA.2008.4601055\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Information Theory and Applications Workshop","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITA.2008.4601055","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Compressed sensing and linear codes over real numbers
Compressed sensing (CS) is a relatively new area of signal processing and statistics that focuses on signal reconstruction from a small number of linear (e.g., dot product) measurements. In this paper, we analyze CS using tools from coding theory because CS can also be viewed as syndrome-based source coding of sparse vectors using linear codes over real numbers. While coding theory does not typically deal with codes over real numbers, there is actually a very close relationship between CS and error-correcting codes over large discrete alphabets. This connection leads naturally to new reconstruction methods and analysis. In some cases, the resulting methods provably require many fewer measurements than previous approaches.