一种用于T-S模糊神经网络结构识别的输入-输出聚类方法

Wei Li, Hong-gui Han, J. Qiao
{"title":"一种用于T-S模糊神经网络结构识别的输入-输出聚类方法","authors":"Wei Li, Hong-gui Han, J. Qiao","doi":"10.1109/CICA.2014.7013228","DOIUrl":null,"url":null,"abstract":"This paper proposes a novel input-output clustering approach for structure identification of T-S fuzzy neural networks. This approach consists of two phases. Firstly, k-means clustering method is applied to the input data to provide the initial clusters of the input space. Secondly, check whether the sub-clustering is needed for each input cluster by considering the corresponding output variation and then apply the k-means method to further partition those input clusters needed sub-clustering. Applying the above process recursively leads to the structure identification of a T-S fuzzy neural network and then the parameter identification is completed by using the gradient learning algorithm. The experiments by applying the proposed method to several benchmark problems show better performance compared with many existing methods and then verify the effectiveness and usefulness of the proposed method.","PeriodicalId":340740,"journal":{"name":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An input-output clustering approach for structure identification of T-S fuzzy neural networks\",\"authors\":\"Wei Li, Hong-gui Han, J. Qiao\",\"doi\":\"10.1109/CICA.2014.7013228\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a novel input-output clustering approach for structure identification of T-S fuzzy neural networks. This approach consists of two phases. Firstly, k-means clustering method is applied to the input data to provide the initial clusters of the input space. Secondly, check whether the sub-clustering is needed for each input cluster by considering the corresponding output variation and then apply the k-means method to further partition those input clusters needed sub-clustering. Applying the above process recursively leads to the structure identification of a T-S fuzzy neural network and then the parameter identification is completed by using the gradient learning algorithm. The experiments by applying the proposed method to several benchmark problems show better performance compared with many existing methods and then verify the effectiveness and usefulness of the proposed method.\",\"PeriodicalId\":340740,\"journal\":{\"name\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CICA.2014.7013228\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Symposium on Computational Intelligence in Control and Automation (CICA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CICA.2014.7013228","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种新的T-S模糊神经网络结构识别的输入-输出聚类方法。这种方法包括两个阶段。首先,对输入数据采用k-means聚类方法,给出输入空间的初始聚类;其次,通过考虑每个输入簇对应的输出变化来判断是否需要进行子聚类,然后使用k-means方法对需要进行子聚类的输入簇进行进一步划分。将上述过程递归地进行T-S模糊神经网络的结构辨识,然后利用梯度学习算法完成参数辨识。将该方法应用于多个基准问题的实验表明,与现有的许多方法相比,该方法具有更好的性能,从而验证了该方法的有效性和实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An input-output clustering approach for structure identification of T-S fuzzy neural networks
This paper proposes a novel input-output clustering approach for structure identification of T-S fuzzy neural networks. This approach consists of two phases. Firstly, k-means clustering method is applied to the input data to provide the initial clusters of the input space. Secondly, check whether the sub-clustering is needed for each input cluster by considering the corresponding output variation and then apply the k-means method to further partition those input clusters needed sub-clustering. Applying the above process recursively leads to the structure identification of a T-S fuzzy neural network and then the parameter identification is completed by using the gradient learning algorithm. The experiments by applying the proposed method to several benchmark problems show better performance compared with many existing methods and then verify the effectiveness and usefulness of the proposed method.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信