混合推荐的一阶概率模型

Julia Hoxha, Achim Rettinger
{"title":"混合推荐的一阶概率模型","authors":"Julia Hoxha, Achim Rettinger","doi":"10.1109/ICMLA.2013.118","DOIUrl":null,"url":null,"abstract":"In this paper, we address the task of inferring user preference relationships about various objects in order to generate relevant recommendations. The majority of the traditional approaches to the problem assume a flat representation of the data, and focus on a single dyadic relationship between the objects. We present a richer theoretical model for making recommendations that allows us to reason about many different relations at the same time. The model is based on Markov logic, which is a simple and powerful language that combines first-order logic and probabilistic graphical models. We apply a hybrid, content-collaborative merging scheme through feature combination. We experimentally verify the efficacy of our theoretical model, and show that our method outperforms state-of-the-art recommendation approaches.","PeriodicalId":168867,"journal":{"name":"2013 12th International Conference on Machine Learning and Applications","volume":"2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"10","resultStr":"{\"title\":\"First-Order Probabilistic Model for Hybrid Recommendations\",\"authors\":\"Julia Hoxha, Achim Rettinger\",\"doi\":\"10.1109/ICMLA.2013.118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we address the task of inferring user preference relationships about various objects in order to generate relevant recommendations. The majority of the traditional approaches to the problem assume a flat representation of the data, and focus on a single dyadic relationship between the objects. We present a richer theoretical model for making recommendations that allows us to reason about many different relations at the same time. The model is based on Markov logic, which is a simple and powerful language that combines first-order logic and probabilistic graphical models. We apply a hybrid, content-collaborative merging scheme through feature combination. We experimentally verify the efficacy of our theoretical model, and show that our method outperforms state-of-the-art recommendation approaches.\",\"PeriodicalId\":168867,\"journal\":{\"name\":\"2013 12th International Conference on Machine Learning and Applications\",\"volume\":\"2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-12-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"10\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 12th International Conference on Machine Learning and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2013.118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 12th International Conference on Machine Learning and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2013.118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 10

摘要

在本文中,我们解决了推断用户对各种对象的偏好关系以生成相关推荐的任务。大多数解决该问题的传统方法假设数据的平面表示,并关注对象之间的单一二元关系。我们提出了一个更丰富的理论模型来提出建议,使我们能够同时对许多不同的关系进行推理。该模型基于马尔可夫逻辑,这是一种结合了一阶逻辑和概率图形模型的简单而强大的语言。我们通过特征组合采用了一种混合的、内容协同的合并方案。我们通过实验验证了我们的理论模型的有效性,并表明我们的方法优于最先进的推荐方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
First-Order Probabilistic Model for Hybrid Recommendations
In this paper, we address the task of inferring user preference relationships about various objects in order to generate relevant recommendations. The majority of the traditional approaches to the problem assume a flat representation of the data, and focus on a single dyadic relationship between the objects. We present a richer theoretical model for making recommendations that allows us to reason about many different relations at the same time. The model is based on Markov logic, which is a simple and powerful language that combines first-order logic and probabilistic graphical models. We apply a hybrid, content-collaborative merging scheme through feature combination. We experimentally verify the efficacy of our theoretical model, and show that our method outperforms state-of-the-art recommendation approaches.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信