智能物料搬运系统中自动驾驶车辆的转向和方向敏感A*

Rashmi Ballamajalu, M. Li, F. Sahin, C. Hochgraf, R. Ptucha, M. Kuhl
{"title":"智能物料搬运系统中自动驾驶车辆的转向和方向敏感A*","authors":"Rashmi Ballamajalu, M. Li, F. Sahin, C. Hochgraf, R. Ptucha, M. Kuhl","doi":"10.1109/CASE48305.2020.9216869","DOIUrl":null,"url":null,"abstract":"Autonomous mobile robots are taking on more tasks in warehouses, speeding up operations and reducing accidents that claim many lives each year. This paper proposes a dynamic path planning algorithm, based on $\\mathrm{A}^{*}$ search method for large autonomous mobile robots such as forklifts, and generates an optimized, time-efficient path. Simulation results of the proposed turn and orientation sensitive $\\mathrm{A}^{*}$ algorithm show that it has a 94% success rate of computing a better or similar path compared to that of default $\\mathrm{A}^{*}$. The generated paths are smoother, have fewer turns, resulting in faster execution of tasks. The method also robustly handles unexpected obstacles in the path.","PeriodicalId":212181,"journal":{"name":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","volume":"43 2 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Turn and orientation Sensitive A* for Autonomous Vehicles in Intelligent Material Handling Systems\",\"authors\":\"Rashmi Ballamajalu, M. Li, F. Sahin, C. Hochgraf, R. Ptucha, M. Kuhl\",\"doi\":\"10.1109/CASE48305.2020.9216869\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Autonomous mobile robots are taking on more tasks in warehouses, speeding up operations and reducing accidents that claim many lives each year. This paper proposes a dynamic path planning algorithm, based on $\\\\mathrm{A}^{*}$ search method for large autonomous mobile robots such as forklifts, and generates an optimized, time-efficient path. Simulation results of the proposed turn and orientation sensitive $\\\\mathrm{A}^{*}$ algorithm show that it has a 94% success rate of computing a better or similar path compared to that of default $\\\\mathrm{A}^{*}$. The generated paths are smoother, have fewer turns, resulting in faster execution of tasks. The method also robustly handles unexpected obstacles in the path.\",\"PeriodicalId\":212181,\"journal\":{\"name\":\"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)\",\"volume\":\"43 2 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CASE48305.2020.9216869\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 16th International Conference on Automation Science and Engineering (CASE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CASE48305.2020.9216869","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

自主移动机器人在仓库中承担了更多的任务,加快了操作速度,减少了每年夺去许多生命的事故。针对叉车等大型自主移动机器人,提出了一种基于$\ mathm {a}^{*}$搜索方法的动态路径规划算法,并生成了一条优化的、时间高效的路径。仿真结果表明,与默认算法$\mathrm{A}^{*}$相比,该算法计算出更好或相似路径的成功率为94%。生成的路径更平滑,转弯更少,从而更快地执行任务。该方法还可以鲁棒地处理路径中的意外障碍物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Turn and orientation Sensitive A* for Autonomous Vehicles in Intelligent Material Handling Systems
Autonomous mobile robots are taking on more tasks in warehouses, speeding up operations and reducing accidents that claim many lives each year. This paper proposes a dynamic path planning algorithm, based on $\mathrm{A}^{*}$ search method for large autonomous mobile robots such as forklifts, and generates an optimized, time-efficient path. Simulation results of the proposed turn and orientation sensitive $\mathrm{A}^{*}$ algorithm show that it has a 94% success rate of computing a better or similar path compared to that of default $\mathrm{A}^{*}$. The generated paths are smoother, have fewer turns, resulting in faster execution of tasks. The method also robustly handles unexpected obstacles in the path.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信