基于多尺度卷积神经网络的遥感图像超分辨率研究

Xing Qin, Xiaoqi Gao, Keqiang Yue
{"title":"基于多尺度卷积神经网络的遥感图像超分辨率研究","authors":"Xing Qin, Xiaoqi Gao, Keqiang Yue","doi":"10.1109/UCMMT45316.2018.9015801","DOIUrl":null,"url":null,"abstract":"Remote sensing images have advantages in large-area imaging and macroscopic integrity. However, in most commercial applications, further recognition and processing becomes difficult due to the low spatial resolution of the acquired images. Therefore, improving the resolution of remote sensing images has important practical significance. To solve this problem, we propose a remote sensing image super-resolution method based on deep learning technology. In order to obtain more detailed image information, we introduce multi-scale convolution to implement feature extraction and deconvolution be used to achieve the final 3× image reconstruction without bicubic interpolation. Experimental results show that our network achieves better performance than prior art methods and visual improvement of our results is easily noticeable.","PeriodicalId":326539,"journal":{"name":"2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Remote Sensing Image Super-Resolution using Multi-Scale Convolutional Neural Network\",\"authors\":\"Xing Qin, Xiaoqi Gao, Keqiang Yue\",\"doi\":\"10.1109/UCMMT45316.2018.9015801\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Remote sensing images have advantages in large-area imaging and macroscopic integrity. However, in most commercial applications, further recognition and processing becomes difficult due to the low spatial resolution of the acquired images. Therefore, improving the resolution of remote sensing images has important practical significance. To solve this problem, we propose a remote sensing image super-resolution method based on deep learning technology. In order to obtain more detailed image information, we introduce multi-scale convolution to implement feature extraction and deconvolution be used to achieve the final 3× image reconstruction without bicubic interpolation. Experimental results show that our network achieves better performance than prior art methods and visual improvement of our results is easily noticeable.\",\"PeriodicalId\":326539,\"journal\":{\"name\":\"2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/UCMMT45316.2018.9015801\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 11th UK-Europe-China Workshop on Millimeter Waves and Terahertz Technologies (UCMMT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/UCMMT45316.2018.9015801","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

遥感图像具有大面积成像和宏观完整性的优势。然而,在大多数商业应用中,由于获取的图像空间分辨率较低,进一步识别和处理变得困难。因此,提高遥感图像的分辨率具有重要的现实意义。为了解决这一问题,我们提出了一种基于深度学习技术的遥感图像超分辨率方法。为了获得更详细的图像信息,我们引入多尺度卷积来实现特征提取,并使用反卷积来实现最终的3×图像重建,而不需要进行双三次插值。实验结果表明,我们的网络取得了比现有技术方法更好的性能,并且我们的结果的视觉改进很容易被注意到。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Remote Sensing Image Super-Resolution using Multi-Scale Convolutional Neural Network
Remote sensing images have advantages in large-area imaging and macroscopic integrity. However, in most commercial applications, further recognition and processing becomes difficult due to the low spatial resolution of the acquired images. Therefore, improving the resolution of remote sensing images has important practical significance. To solve this problem, we propose a remote sensing image super-resolution method based on deep learning technology. In order to obtain more detailed image information, we introduce multi-scale convolution to implement feature extraction and deconvolution be used to achieve the final 3× image reconstruction without bicubic interpolation. Experimental results show that our network achieves better performance than prior art methods and visual improvement of our results is easily noticeable.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信