M. Sheikhi, S. Emamghoreishi, S. Javadpoor, M. Moravvej-Farshi
{"title":"一种新的多量子阱电吸收调制器的理论设计优化","authors":"M. Sheikhi, S. Emamghoreishi, S. Javadpoor, M. Moravvej-Farshi","doi":"10.1109/NUSOD.2003.1259031","DOIUrl":null,"url":null,"abstract":"A numerical model for computing electroabsorption in InAlAs/InGaAs multiple quantum well based on a matrix method is presented. The model is made simple to make it suitable as fast-design-tool for multiple quantum well electroabsorption modulators. A complete and self-consistent model of the quantum confined Stark effect (QCSE) is also presented. Scalar Schrodinger equation is solved in the presence of static electric field. The position of heavy hole (hh) exciton peak and its shift (stark shift) is calculated numerically, considering the effect of the number, width and height of quantum wells. Coupling effect between the quantum wells in the calculations was considered for the first time.","PeriodicalId":206987,"journal":{"name":"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A new theoretical design optimization of multiple quantum-well electroabsorption modulator\",\"authors\":\"M. Sheikhi, S. Emamghoreishi, S. Javadpoor, M. Moravvej-Farshi\",\"doi\":\"10.1109/NUSOD.2003.1259031\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A numerical model for computing electroabsorption in InAlAs/InGaAs multiple quantum well based on a matrix method is presented. The model is made simple to make it suitable as fast-design-tool for multiple quantum well electroabsorption modulators. A complete and self-consistent model of the quantum confined Stark effect (QCSE) is also presented. Scalar Schrodinger equation is solved in the presence of static electric field. The position of heavy hole (hh) exciton peak and its shift (stark shift) is calculated numerically, considering the effect of the number, width and height of quantum wells. Coupling effect between the quantum wells in the calculations was considered for the first time.\",\"PeriodicalId\":206987,\"journal\":{\"name\":\"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-10-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NUSOD.2003.1259031\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE/LEOS 3rd International Conference on Numerical Simulation of Semiconductor Optoelectronic Devices, 2003. Proceedings","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NUSOD.2003.1259031","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A new theoretical design optimization of multiple quantum-well electroabsorption modulator
A numerical model for computing electroabsorption in InAlAs/InGaAs multiple quantum well based on a matrix method is presented. The model is made simple to make it suitable as fast-design-tool for multiple quantum well electroabsorption modulators. A complete and self-consistent model of the quantum confined Stark effect (QCSE) is also presented. Scalar Schrodinger equation is solved in the presence of static electric field. The position of heavy hole (hh) exciton peak and its shift (stark shift) is calculated numerically, considering the effect of the number, width and height of quantum wells. Coupling effect between the quantum wells in the calculations was considered for the first time.