样本方差的Gram Charlier和Edgeworth展开式

E. Benhamou
{"title":"样本方差的Gram Charlier和Edgeworth展开式","authors":"E. Benhamou","doi":"10.2139/ssrn.3251324","DOIUrl":null,"url":null,"abstract":"In this paper, we derive a valid Edgeworth expansions for the Bessel corrected empirical variance when data are generated by a strongly mixing process whose distribution can be arbitrarily. The constraint of strongly mixing process makes the problem not easy. Indeed, even for a strongly mixing normal process, the distribution is unknown. Here, we do not assume any other assumption than a sufficiently fast decrease of the underlying distribution to make the Edgeworth expansion convergent. This results can obviously apply to strongly mixing normal process and provide an alternative to the work of Moschopoulos (1985) and Mathai (1982).","PeriodicalId":260073,"journal":{"name":"Mathematics eJournal","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Gram Charlier and Edgeworth Expansion for Sample Variance\",\"authors\":\"E. Benhamou\",\"doi\":\"10.2139/ssrn.3251324\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we derive a valid Edgeworth expansions for the Bessel corrected empirical variance when data are generated by a strongly mixing process whose distribution can be arbitrarily. The constraint of strongly mixing process makes the problem not easy. Indeed, even for a strongly mixing normal process, the distribution is unknown. Here, we do not assume any other assumption than a sufficiently fast decrease of the underlying distribution to make the Edgeworth expansion convergent. This results can obviously apply to strongly mixing normal process and provide an alternative to the work of Moschopoulos (1985) and Mathai (1982).\",\"PeriodicalId\":260073,\"journal\":{\"name\":\"Mathematics eJournal\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematics eJournal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3251324\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics eJournal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3251324","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在本文中,我们导出了一个有效的Edgeworth展开式,当数据是由一个强混合过程产生的,其分布可以是任意的。强混合过程的约束使问题变得不容易。事实上,即使对于一个强混合正态过程,其分布也是未知的。在这里,我们不假设任何其他的假设,除了底层分布的足够快的减少,使Edgeworth展开收敛。这一结果显然适用于强混合的正常过程,并为Moschopoulos(1985)和Mathai(1982)的工作提供了另一种选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Gram Charlier and Edgeworth Expansion for Sample Variance
In this paper, we derive a valid Edgeworth expansions for the Bessel corrected empirical variance when data are generated by a strongly mixing process whose distribution can be arbitrarily. The constraint of strongly mixing process makes the problem not easy. Indeed, even for a strongly mixing normal process, the distribution is unknown. Here, we do not assume any other assumption than a sufficiently fast decrease of the underlying distribution to make the Edgeworth expansion convergent. This results can obviously apply to strongly mixing normal process and provide an alternative to the work of Moschopoulos (1985) and Mathai (1982).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信