鲁棒动态光流估计的不确定性优化

Volker Willert, Marc Toussaint, J. Eggert, E. Körner
{"title":"鲁棒动态光流估计的不确定性优化","authors":"Volker Willert, Marc Toussaint, J. Eggert, E. Körner","doi":"10.1109/ICMLA.2007.15","DOIUrl":null,"url":null,"abstract":"We develop an optical flow estimation framework that focuses on motion estimation over time formulated in a dynamic Bayesian network. It realizes a spatiotemporal integration of motion information using a dynamic and robust prior that incorporates spatial and temporal coherence constraints on the flow field. The main contribution is the embedding of these particular assumptions on optical flow evolution into the Bayesian propagation approach that leads to a computationally feasible two-filter inference method and is applicable for on and offline parameter optimization. We analyse the possibility to optimize imposed Student's t-distributed model uncertainties, which are the camera noise and the transition noise. Experiments with synthetic sequences illustrate how the probabilistic framework improves the optical flow estimation because it allows for noisy data, motion ambiguities and motion discontinuities.","PeriodicalId":448863,"journal":{"name":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Uncertainty optimization for robust dynamic optical flow estimation\",\"authors\":\"Volker Willert, Marc Toussaint, J. Eggert, E. Körner\",\"doi\":\"10.1109/ICMLA.2007.15\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop an optical flow estimation framework that focuses on motion estimation over time formulated in a dynamic Bayesian network. It realizes a spatiotemporal integration of motion information using a dynamic and robust prior that incorporates spatial and temporal coherence constraints on the flow field. The main contribution is the embedding of these particular assumptions on optical flow evolution into the Bayesian propagation approach that leads to a computationally feasible two-filter inference method and is applicable for on and offline parameter optimization. We analyse the possibility to optimize imposed Student's t-distributed model uncertainties, which are the camera noise and the transition noise. Experiments with synthetic sequences illustrate how the probabilistic framework improves the optical flow estimation because it allows for noisy data, motion ambiguities and motion discontinuities.\",\"PeriodicalId\":448863,\"journal\":{\"name\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICMLA.2007.15\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sixth International Conference on Machine Learning and Applications (ICMLA 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICMLA.2007.15","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

我们开发了一个光流估计框架,重点关注动态贝叶斯网络中随时间的运动估计。它利用动态和鲁棒先验,结合流场的空间和时间相干约束,实现了运动信息的时空集成。主要贡献是将这些关于光流演化的特定假设嵌入到贝叶斯传播方法中,从而得到一种计算上可行的双滤波器推理方法,并适用于在线和离线参数优化。我们分析了优化强加的学生t分布模型不确定性的可能性,这些不确定性是相机噪声和过渡噪声。合成序列的实验说明了概率框架如何改进光流估计,因为它允许有噪声的数据,运动模糊和运动不连续。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Uncertainty optimization for robust dynamic optical flow estimation
We develop an optical flow estimation framework that focuses on motion estimation over time formulated in a dynamic Bayesian network. It realizes a spatiotemporal integration of motion information using a dynamic and robust prior that incorporates spatial and temporal coherence constraints on the flow field. The main contribution is the embedding of these particular assumptions on optical flow evolution into the Bayesian propagation approach that leads to a computationally feasible two-filter inference method and is applicable for on and offline parameter optimization. We analyse the possibility to optimize imposed Student's t-distributed model uncertainties, which are the camera noise and the transition noise. Experiments with synthetic sequences illustrate how the probabilistic framework improves the optical flow estimation because it allows for noisy data, motion ambiguities and motion discontinuities.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信