Krishnapriya Vishnubhotla, Frank Rudzicz, Graeme Hirst, Adam Hammond
{"title":"改进文学小说引文自动归因","authors":"Krishnapriya Vishnubhotla, Frank Rudzicz, Graeme Hirst, Adam Hammond","doi":"10.48550/arXiv.2307.03734","DOIUrl":null,"url":null,"abstract":"Current models for quotation attribution in literary novels assume varying levels of available information in their training and test data, which poses a challenge for in-the-wild inference. Here, we approach quotation attribution as a set of four interconnected sub-tasks: character identification, coreference resolution, quotation identification, and speaker attribution. We benchmark state-of-the-art models on each of these sub-tasks independently, using a large dataset of annotated coreferences and quotations in literary novels (the Project Dialogism Novel Corpus). We also train and evaluate models for the speaker attribution task in particular, showing that a simple sequential prediction model achieves accuracy scores on par with state-of-the-art models.","PeriodicalId":352845,"journal":{"name":"Annual Meeting of the Association for Computational Linguistics","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-07-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improving Automatic Quotation Attribution in Literary Novels\",\"authors\":\"Krishnapriya Vishnubhotla, Frank Rudzicz, Graeme Hirst, Adam Hammond\",\"doi\":\"10.48550/arXiv.2307.03734\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Current models for quotation attribution in literary novels assume varying levels of available information in their training and test data, which poses a challenge for in-the-wild inference. Here, we approach quotation attribution as a set of four interconnected sub-tasks: character identification, coreference resolution, quotation identification, and speaker attribution. We benchmark state-of-the-art models on each of these sub-tasks independently, using a large dataset of annotated coreferences and quotations in literary novels (the Project Dialogism Novel Corpus). We also train and evaluate models for the speaker attribution task in particular, showing that a simple sequential prediction model achieves accuracy scores on par with state-of-the-art models.\",\"PeriodicalId\":352845,\"journal\":{\"name\":\"Annual Meeting of the Association for Computational Linguistics\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-07-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annual Meeting of the Association for Computational Linguistics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2307.03734\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annual Meeting of the Association for Computational Linguistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2307.03734","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Automatic Quotation Attribution in Literary Novels
Current models for quotation attribution in literary novels assume varying levels of available information in their training and test data, which poses a challenge for in-the-wild inference. Here, we approach quotation attribution as a set of four interconnected sub-tasks: character identification, coreference resolution, quotation identification, and speaker attribution. We benchmark state-of-the-art models on each of these sub-tasks independently, using a large dataset of annotated coreferences and quotations in literary novels (the Project Dialogism Novel Corpus). We also train and evaluate models for the speaker attribution task in particular, showing that a simple sequential prediction model achieves accuracy scores on par with state-of-the-art models.