基于对抗性多目标奖励优化的深度强化学习智能体内隐规范训练

M. Peschl
{"title":"基于对抗性多目标奖励优化的深度强化学习智能体内隐规范训练","authors":"M. Peschl","doi":"10.1145/3461702.3462473","DOIUrl":null,"url":null,"abstract":"We propose a deep reinforcement learning algorithm that employs an adversarial training strategy for adhering to implicit human norms alongside optimizing for a narrow goal objective. Previous methods which incorporate human values into reinforcement learning algorithms either scale poorly or assume hand-crafted state features. Our algorithm drops these assumptions and is able to automatically infer norms from human demonstrations, which allows for integrating it into existing agents in the form of multi-objective optimization. We benchmark our approach in a search-and-rescue grid world and show that, conditioned on respecting human norms, our agent maintains optimal performance with respect to the predefined goal.","PeriodicalId":197336,"journal":{"name":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","volume":"43 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Training for Implicit Norms in Deep Reinforcement Learning Agents through Adversarial Multi-Objective Reward Optimization\",\"authors\":\"M. Peschl\",\"doi\":\"10.1145/3461702.3462473\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a deep reinforcement learning algorithm that employs an adversarial training strategy for adhering to implicit human norms alongside optimizing for a narrow goal objective. Previous methods which incorporate human values into reinforcement learning algorithms either scale poorly or assume hand-crafted state features. Our algorithm drops these assumptions and is able to automatically infer norms from human demonstrations, which allows for integrating it into existing agents in the form of multi-objective optimization. We benchmark our approach in a search-and-rescue grid world and show that, conditioned on respecting human norms, our agent maintains optimal performance with respect to the predefined goal.\",\"PeriodicalId\":197336,\"journal\":{\"name\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"volume\":\"43 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3461702.3462473\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2021 AAAI/ACM Conference on AI, Ethics, and Society","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3461702.3462473","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

我们提出了一种深度强化学习算法,该算法采用对抗训练策略来坚持内隐的人类规范,同时针对狭窄的目标目标进行优化。以前将人类价值观纳入强化学习算法的方法要么伸缩性差,要么假设手工制作的状态特征。我们的算法放弃了这些假设,并能够自动从人类演示中推断出规范,这允许以多目标优化的形式将其集成到现有的代理中。我们在搜索和救援网格世界中对我们的方法进行了基准测试,并表明,在尊重人类规范的条件下,我们的智能体相对于预定义的目标保持了最佳性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Training for Implicit Norms in Deep Reinforcement Learning Agents through Adversarial Multi-Objective Reward Optimization
We propose a deep reinforcement learning algorithm that employs an adversarial training strategy for adhering to implicit human norms alongside optimizing for a narrow goal objective. Previous methods which incorporate human values into reinforcement learning algorithms either scale poorly or assume hand-crafted state features. Our algorithm drops these assumptions and is able to automatically infer norms from human demonstrations, which allows for integrating it into existing agents in the form of multi-objective optimization. We benchmark our approach in a search-and-rescue grid world and show that, conditioned on respecting human norms, our agent maintains optimal performance with respect to the predefined goal.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信