无线多跳网络的时延最小化路由策略

Kostas Stamatiou, F. Rossetto, M. Haenggi, T. Javidi, J. Zeidler, M. Zorzi
{"title":"无线多跳网络的时延最小化路由策略","authors":"Kostas Stamatiou, F. Rossetto, M. Haenggi, T. Javidi, J. Zeidler, M. Zorzi","doi":"10.1109/WIOPT.2009.5291567","DOIUrl":null,"url":null,"abstract":"We consider a network where each route comprises a backlogged source, a number of relays and a destination at a finite distance. The locations of the sources and the relays are realizations of independent Poisson point processes. Given that the nodes observe a TDMA/ALOHA MAC protocol, our objective is to determine the number of relays and their placement such that the mean end-to-end delay in a typical route of the network is minimized.We first study an idealistic network model where all routes have the same number of hops, the same distance per hop and their own dedicated relays. Combining tools from queueing theory and stochastic geometry, we provide a precise characterization of the mean end-to-end delay. We find that the delay is minimized if the first hop is much longer than the remaining hops and that the optimal number of hops scales sublinearly with the source-destination distance. Simulating the original network scenario reveals that the analytical results are accurate, provided that the density of the relay process is sufficiently large. We conclude that, given the considered MAC protocol, our analysis provides a delay-minimizing routing strategy for random, multihop networks involving a small number of hops.","PeriodicalId":143632,"journal":{"name":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","volume":"48 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"33","resultStr":"{\"title\":\"A delay-minimizing routing strategy for wireless multi-hop networks\",\"authors\":\"Kostas Stamatiou, F. Rossetto, M. Haenggi, T. Javidi, J. Zeidler, M. Zorzi\",\"doi\":\"10.1109/WIOPT.2009.5291567\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a network where each route comprises a backlogged source, a number of relays and a destination at a finite distance. The locations of the sources and the relays are realizations of independent Poisson point processes. Given that the nodes observe a TDMA/ALOHA MAC protocol, our objective is to determine the number of relays and their placement such that the mean end-to-end delay in a typical route of the network is minimized.We first study an idealistic network model where all routes have the same number of hops, the same distance per hop and their own dedicated relays. Combining tools from queueing theory and stochastic geometry, we provide a precise characterization of the mean end-to-end delay. We find that the delay is minimized if the first hop is much longer than the remaining hops and that the optimal number of hops scales sublinearly with the source-destination distance. Simulating the original network scenario reveals that the analytical results are accurate, provided that the density of the relay process is sufficiently large. We conclude that, given the considered MAC protocol, our analysis provides a delay-minimizing routing strategy for random, multihop networks involving a small number of hops.\",\"PeriodicalId\":143632,\"journal\":{\"name\":\"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks\",\"volume\":\"48 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"33\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WIOPT.2009.5291567\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 7th International Symposium on Modeling and Optimization in Mobile, Ad Hoc, and Wireless Networks","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WIOPT.2009.5291567","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 33

摘要

我们考虑一个网络,其中每条路由包括一个积压的源,一些中继和一个有限距离的目的地。源和继电器的位置是独立泊松点过程的实现。假设节点遵守TDMA/ALOHA MAC协议,我们的目标是确定中继的数量和它们的位置,从而使网络典型路由中的平均端到端延迟最小化。我们首先研究了一个理想网络模型,其中所有路由具有相同的跳数,相同的每跳距离和各自的专用中继。结合排队理论和随机几何的工具,我们提供了端到端平均延迟的精确表征。我们发现,当第一跳比剩余跳长得多时,延迟是最小的,并且最优跳数与源-目的距离呈亚线性关系。通过对原始网络场景的模拟表明,在中继过程密度足够大的情况下,分析结果是准确的。我们的结论是,给定所考虑的MAC协议,我们的分析为涉及少量跳数的随机多跳网络提供了延迟最小化路由策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A delay-minimizing routing strategy for wireless multi-hop networks
We consider a network where each route comprises a backlogged source, a number of relays and a destination at a finite distance. The locations of the sources and the relays are realizations of independent Poisson point processes. Given that the nodes observe a TDMA/ALOHA MAC protocol, our objective is to determine the number of relays and their placement such that the mean end-to-end delay in a typical route of the network is minimized.We first study an idealistic network model where all routes have the same number of hops, the same distance per hop and their own dedicated relays. Combining tools from queueing theory and stochastic geometry, we provide a precise characterization of the mean end-to-end delay. We find that the delay is minimized if the first hop is much longer than the remaining hops and that the optimal number of hops scales sublinearly with the source-destination distance. Simulating the original network scenario reveals that the analytical results are accurate, provided that the density of the relay process is sufficiently large. We conclude that, given the considered MAC protocol, our analysis provides a delay-minimizing routing strategy for random, multihop networks involving a small number of hops.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信