{"title":"上下文化本体模块的提取与合并","authors":"S. Hussain, S. Abidi","doi":"10.3233/978-1-60750-544-0-25","DOIUrl":null,"url":null,"abstract":"Ontology module extraction, from a large ontology, leads to the generation of a specialized knowledge model that is pertinent to specific problems. Existing ontology module extraction methods tend to either render a too generalized or a too restricted ontology module that at times does not capture the entire semantics of the source ontology. We present an ontology module extraction method that extracts a contextualized ontology module whilst extending the semantics of the extracted concepts and their relationships in the ontology module. Our approach features the following tenets (i) identifying the user-selected concepts that are pertinent for the problem-context at hand; (ii) extracting the user-selected concepts, their roles and their individuals; and (iii) extracting other concepts, roles and individuals that are structurally-connected with the user-selected concepts. We apply our ontology module extraction method in the Healthcare domain, and demonstrate (a) extraction of ontology modules from three prostate cancer pathway ontologies; and then (b) merging of extracted ontology modules to generate a comprehensive therapeutic work-flow knowledge for prostate cancer care management.","PeriodicalId":347742,"journal":{"name":"International Workshop on Modular Ontologies","volume":"32 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2010-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Extracting and Merging Contextualized Ontology Modules\",\"authors\":\"S. Hussain, S. Abidi\",\"doi\":\"10.3233/978-1-60750-544-0-25\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Ontology module extraction, from a large ontology, leads to the generation of a specialized knowledge model that is pertinent to specific problems. Existing ontology module extraction methods tend to either render a too generalized or a too restricted ontology module that at times does not capture the entire semantics of the source ontology. We present an ontology module extraction method that extracts a contextualized ontology module whilst extending the semantics of the extracted concepts and their relationships in the ontology module. Our approach features the following tenets (i) identifying the user-selected concepts that are pertinent for the problem-context at hand; (ii) extracting the user-selected concepts, their roles and their individuals; and (iii) extracting other concepts, roles and individuals that are structurally-connected with the user-selected concepts. We apply our ontology module extraction method in the Healthcare domain, and demonstrate (a) extraction of ontology modules from three prostate cancer pathway ontologies; and then (b) merging of extracted ontology modules to generate a comprehensive therapeutic work-flow knowledge for prostate cancer care management.\",\"PeriodicalId\":347742,\"journal\":{\"name\":\"International Workshop on Modular Ontologies\",\"volume\":\"32 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2010-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Workshop on Modular Ontologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3233/978-1-60750-544-0-25\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Workshop on Modular Ontologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3233/978-1-60750-544-0-25","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Extracting and Merging Contextualized Ontology Modules
Ontology module extraction, from a large ontology, leads to the generation of a specialized knowledge model that is pertinent to specific problems. Existing ontology module extraction methods tend to either render a too generalized or a too restricted ontology module that at times does not capture the entire semantics of the source ontology. We present an ontology module extraction method that extracts a contextualized ontology module whilst extending the semantics of the extracted concepts and their relationships in the ontology module. Our approach features the following tenets (i) identifying the user-selected concepts that are pertinent for the problem-context at hand; (ii) extracting the user-selected concepts, their roles and their individuals; and (iii) extracting other concepts, roles and individuals that are structurally-connected with the user-selected concepts. We apply our ontology module extraction method in the Healthcare domain, and demonstrate (a) extraction of ontology modules from three prostate cancer pathway ontologies; and then (b) merging of extracted ontology modules to generate a comprehensive therapeutic work-flow knowledge for prostate cancer care management.