增量发现包含依赖关系

Nuhad Shaabani, C. Meinel
{"title":"增量发现包含依赖关系","authors":"Nuhad Shaabani, C. Meinel","doi":"10.1145/3085504.3085506","DOIUrl":null,"url":null,"abstract":"Inclusion dependencies form one of the most fundamental classes of integrity constraints. Their importance in classical data management is reinforced by modern applications such as data profiling, data cleaning, entity resolution and schema matching. Their discovery in an unknown dataset is at the core of any data analysis effort. Therefore, several research approaches have focused on their efficient discovery in a given, static dataset. However, none of these approaches are appropriate for applications on dynamic datasets, such as transactional datasets, scientific applications, and social network. In these cases, discovery techniques should be able to efficiently update the inclusion dependencies after an update in the dataset, without reprocessing the entire dataset. We present the first approach for incrementally updating the unary inclusion dependencies. In particular, our approach is based on the concept of attribute clustering from which the unary inclusion dependencies are efficiently derivable. We incrementally update the clusters after each update of the dataset. Updating the clusters does not need to access the dataset because of special data structures designed to efficiently support the updating process. We perform an exhaustive analysis of our approach by applying it to large datasets with several hundred attributes and more than 116,200,000 million tuples. The results show that the incremental discovery significantly reduces the runtime needed by the static discovery. This reduction in the runtime is up to 99.9996 % for both the insert and the delete.","PeriodicalId":431308,"journal":{"name":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","volume":"47 59","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Incremental Discovery of Inclusion Dependencies\",\"authors\":\"Nuhad Shaabani, C. Meinel\",\"doi\":\"10.1145/3085504.3085506\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Inclusion dependencies form one of the most fundamental classes of integrity constraints. Their importance in classical data management is reinforced by modern applications such as data profiling, data cleaning, entity resolution and schema matching. Their discovery in an unknown dataset is at the core of any data analysis effort. Therefore, several research approaches have focused on their efficient discovery in a given, static dataset. However, none of these approaches are appropriate for applications on dynamic datasets, such as transactional datasets, scientific applications, and social network. In these cases, discovery techniques should be able to efficiently update the inclusion dependencies after an update in the dataset, without reprocessing the entire dataset. We present the first approach for incrementally updating the unary inclusion dependencies. In particular, our approach is based on the concept of attribute clustering from which the unary inclusion dependencies are efficiently derivable. We incrementally update the clusters after each update of the dataset. Updating the clusters does not need to access the dataset because of special data structures designed to efficiently support the updating process. We perform an exhaustive analysis of our approach by applying it to large datasets with several hundred attributes and more than 116,200,000 million tuples. The results show that the incremental discovery significantly reduces the runtime needed by the static discovery. This reduction in the runtime is up to 99.9996 % for both the insert and the delete.\",\"PeriodicalId\":431308,\"journal\":{\"name\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"volume\":\"47 59\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 29th International Conference on Scientific and Statistical Database Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3085504.3085506\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 29th International Conference on Scientific and Statistical Database Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3085504.3085506","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

包含依赖关系构成了最基本的完整性约束之一。数据分析、数据清理、实体解析和模式匹配等现代应用强化了它们在经典数据管理中的重要性。它们在未知数据集中的发现是任何数据分析工作的核心。因此,有几种研究方法集中于在给定的静态数据集中有效地发现它们。然而,这些方法都不适合动态数据集的应用,比如事务数据集、科学应用和社会网络。在这些情况下,发现技术应该能够在数据集更新后有效地更新包含依赖项,而无需重新处理整个数据集。我们提出了第一种增量更新一元包含依赖关系的方法。特别是,我们的方法是基于属性聚类的概念,从中可以有效地推导一元包含依赖关系。我们在每次更新数据集之后增量地更新聚类。更新集群不需要访问数据集,因为设计了特殊的数据结构来有效地支持更新过程。我们通过将其应用于具有数百个属性和超过116,200,000万个元组的大型数据集,对我们的方法进行了详尽的分析。结果表明,增量发现显著减少了静态发现所需的运行时间。对于插入操作和删除操作,运行时所减少的时间最多可达99.9996%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Incremental Discovery of Inclusion Dependencies
Inclusion dependencies form one of the most fundamental classes of integrity constraints. Their importance in classical data management is reinforced by modern applications such as data profiling, data cleaning, entity resolution and schema matching. Their discovery in an unknown dataset is at the core of any data analysis effort. Therefore, several research approaches have focused on their efficient discovery in a given, static dataset. However, none of these approaches are appropriate for applications on dynamic datasets, such as transactional datasets, scientific applications, and social network. In these cases, discovery techniques should be able to efficiently update the inclusion dependencies after an update in the dataset, without reprocessing the entire dataset. We present the first approach for incrementally updating the unary inclusion dependencies. In particular, our approach is based on the concept of attribute clustering from which the unary inclusion dependencies are efficiently derivable. We incrementally update the clusters after each update of the dataset. Updating the clusters does not need to access the dataset because of special data structures designed to efficiently support the updating process. We perform an exhaustive analysis of our approach by applying it to large datasets with several hundred attributes and more than 116,200,000 million tuples. The results show that the incremental discovery significantly reduces the runtime needed by the static discovery. This reduction in the runtime is up to 99.9996 % for both the insert and the delete.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信