G. Xenoulis, M. Psarakis, D. Gizopoulos, A. Paschalis
{"title":"微处理器中高速浮点单元的在线周期性自检","authors":"G. Xenoulis, M. Psarakis, D. Gizopoulos, A. Paschalis","doi":"10.1109/DFT.2007.32","DOIUrl":null,"url":null,"abstract":"On-line periodic testing of microprocessors is a viable low-cost alternative for a wide variety of embedded systems which cannot afford hardware or software redundancy techniques but necessitate the detection of intermittent or permanent faults. Low-cost, on-line periodic testing has been previously applied to the integer datapaths of microprocessors but not to their high-performance real number processing counterparts consisting of sophisticated high-speed floating-point (FP) units. In this paper, we present, an effective on-line periodic self-testing methodology for high-speed FP units and demonstrate it on high-speed FP adders/subtracters of both single and double precision. The proposed self-test code development methodology leads to compact self-test routines that exploit the integer part of the processors instruction set architecture to apply test sets to the FP subsystem periodically. The periodic self-test routines exhibit very low memory storage requirements along with a very small number of memory references which are both fundamental requirements for on-line periodic testing. A comprehensive set of experiments on both single and double precision FP units including pipelined versions, and on a RISC processor with a complete FP unit demonstrate the efficacy of the methodology in terms of very high fault coverage and low memory footprint thus rendering the proposed methodology highly appropriate for on-line periodic testing.","PeriodicalId":259700,"journal":{"name":"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)","volume":"1228 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"On-Line Periodic Self-Testing of High-Speed Floating-Point Units in Microprocessors\",\"authors\":\"G. Xenoulis, M. Psarakis, D. Gizopoulos, A. Paschalis\",\"doi\":\"10.1109/DFT.2007.32\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"On-line periodic testing of microprocessors is a viable low-cost alternative for a wide variety of embedded systems which cannot afford hardware or software redundancy techniques but necessitate the detection of intermittent or permanent faults. Low-cost, on-line periodic testing has been previously applied to the integer datapaths of microprocessors but not to their high-performance real number processing counterparts consisting of sophisticated high-speed floating-point (FP) units. In this paper, we present, an effective on-line periodic self-testing methodology for high-speed FP units and demonstrate it on high-speed FP adders/subtracters of both single and double precision. The proposed self-test code development methodology leads to compact self-test routines that exploit the integer part of the processors instruction set architecture to apply test sets to the FP subsystem periodically. The periodic self-test routines exhibit very low memory storage requirements along with a very small number of memory references which are both fundamental requirements for on-line periodic testing. A comprehensive set of experiments on both single and double precision FP units including pipelined versions, and on a RISC processor with a complete FP unit demonstrate the efficacy of the methodology in terms of very high fault coverage and low memory footprint thus rendering the proposed methodology highly appropriate for on-line periodic testing.\",\"PeriodicalId\":259700,\"journal\":{\"name\":\"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)\",\"volume\":\"1228 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DFT.2007.32\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI Systems (DFT 2007)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DFT.2007.32","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
On-Line Periodic Self-Testing of High-Speed Floating-Point Units in Microprocessors
On-line periodic testing of microprocessors is a viable low-cost alternative for a wide variety of embedded systems which cannot afford hardware or software redundancy techniques but necessitate the detection of intermittent or permanent faults. Low-cost, on-line periodic testing has been previously applied to the integer datapaths of microprocessors but not to their high-performance real number processing counterparts consisting of sophisticated high-speed floating-point (FP) units. In this paper, we present, an effective on-line periodic self-testing methodology for high-speed FP units and demonstrate it on high-speed FP adders/subtracters of both single and double precision. The proposed self-test code development methodology leads to compact self-test routines that exploit the integer part of the processors instruction set architecture to apply test sets to the FP subsystem periodically. The periodic self-test routines exhibit very low memory storage requirements along with a very small number of memory references which are both fundamental requirements for on-line periodic testing. A comprehensive set of experiments on both single and double precision FP units including pipelined versions, and on a RISC processor with a complete FP unit demonstrate the efficacy of the methodology in terms of very high fault coverage and low memory footprint thus rendering the proposed methodology highly appropriate for on-line periodic testing.