基于随机森林分类器的Sentinel-2数据云量评估

Petteri Nevavuori, T. Lipping, Nathaniel G. Narra, Petri Linna
{"title":"基于随机森林分类器的Sentinel-2数据云量评估","authors":"Petteri Nevavuori, T. Lipping, Nathaniel G. Narra, Petri Linna","doi":"10.1109/IGARSS39084.2020.9323683","DOIUrl":null,"url":null,"abstract":"In this paper, a novel cloud coverage assessment method for the Sentinel-2 data is presented. The method is based on the Random Forest classifier and the target values used in the training process are obtained by comparing the NDVI indexes calculated from the satellite and the UAV data. The developed method is shown to outperform the Sentinel Cloud Probability Mask (CLDPRB) and Scene Classification (SCL) data layers in detecting cloudy areas.","PeriodicalId":444267,"journal":{"name":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","volume":"61 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Assessment of Cloud Cover in Sentinel-2 Data Using Random Forest Classifier\",\"authors\":\"Petteri Nevavuori, T. Lipping, Nathaniel G. Narra, Petri Linna\",\"doi\":\"10.1109/IGARSS39084.2020.9323683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a novel cloud coverage assessment method for the Sentinel-2 data is presented. The method is based on the Random Forest classifier and the target values used in the training process are obtained by comparing the NDVI indexes calculated from the satellite and the UAV data. The developed method is shown to outperform the Sentinel Cloud Probability Mask (CLDPRB) and Scene Classification (SCL) data layers in detecting cloudy areas.\",\"PeriodicalId\":444267,\"journal\":{\"name\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"volume\":\"61 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-09-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IGARSS39084.2020.9323683\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IGARSS 2020 - 2020 IEEE International Geoscience and Remote Sensing Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IGARSS39084.2020.9323683","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种基于Sentinel-2卫星数据的云覆盖评估方法。该方法基于随机森林分类器,通过比较卫星数据和无人机数据计算的NDVI指标获得训练过程中使用的目标值。该方法在检测多云区域方面优于哨兵云概率掩模(CLDPRB)和场景分类(SCL)数据层。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Assessment of Cloud Cover in Sentinel-2 Data Using Random Forest Classifier
In this paper, a novel cloud coverage assessment method for the Sentinel-2 data is presented. The method is based on the Random Forest classifier and the target values used in the training process are obtained by comparing the NDVI indexes calculated from the satellite and the UAV data. The developed method is shown to outperform the Sentinel Cloud Probability Mask (CLDPRB) and Scene Classification (SCL) data layers in detecting cloudy areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信