边缘计算中基于优先级的公平调度

A. Madej, Nan Wang, N. Athanasopoulos, R. Ranjan, B. Varghese
{"title":"边缘计算中基于优先级的公平调度","authors":"A. Madej, Nan Wang, N. Athanasopoulos, R. Ranjan, B. Varghese","doi":"10.1109/ICFEC50348.2020.00012","DOIUrl":null,"url":null,"abstract":"Scheduling is important in Edge computing. In contrast to the Cloud, Edge resources are hardware limited and cannot support workload-driven infrastructure scaling. Hence, resource allocation and scheduling for the Edge requires a fresh perspective. Existing Edge scheduling research assumes availability of all needed resources whenever a job request is made. This paper challenges that assumption, since not all job requests from a Cloud server can be scheduled on an Edge node. Thus, guaranteeing fairness among the clients (Cloud servers offloading jobs) while accounting for priorities of the jobs becomes a critical task. This paper presents four scheduling techniques, the first is a naive first come first serve strategy and further proposes three strategies, namely a client fair, priority fair, and hybrid that accounts for the fairness of both clients and job priorities. An evaluation on a target platform under three different scenarios, namely equal, random, and Gaussian job distributions is presented. The experimental studies highlight the low overheads and the distribution of scheduled jobs on the Edge node when compared to the naive strategy. The results confirm the superior performance of the hybrid strategy and showcase the feasibility of fair schedulers for Edge computing.","PeriodicalId":277214,"journal":{"name":"2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"11","resultStr":"{\"title\":\"Priority-based Fair Scheduling in Edge Computing\",\"authors\":\"A. Madej, Nan Wang, N. Athanasopoulos, R. Ranjan, B. Varghese\",\"doi\":\"10.1109/ICFEC50348.2020.00012\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Scheduling is important in Edge computing. In contrast to the Cloud, Edge resources are hardware limited and cannot support workload-driven infrastructure scaling. Hence, resource allocation and scheduling for the Edge requires a fresh perspective. Existing Edge scheduling research assumes availability of all needed resources whenever a job request is made. This paper challenges that assumption, since not all job requests from a Cloud server can be scheduled on an Edge node. Thus, guaranteeing fairness among the clients (Cloud servers offloading jobs) while accounting for priorities of the jobs becomes a critical task. This paper presents four scheduling techniques, the first is a naive first come first serve strategy and further proposes three strategies, namely a client fair, priority fair, and hybrid that accounts for the fairness of both clients and job priorities. An evaluation on a target platform under three different scenarios, namely equal, random, and Gaussian job distributions is presented. The experimental studies highlight the low overheads and the distribution of scheduled jobs on the Edge node when compared to the naive strategy. The results confirm the superior performance of the hybrid strategy and showcase the feasibility of fair schedulers for Edge computing.\",\"PeriodicalId\":277214,\"journal\":{\"name\":\"2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"11\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICFEC50348.2020.00012\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 4th International Conference on Fog and Edge Computing (ICFEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICFEC50348.2020.00012","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 11

摘要

调度在边缘计算中非常重要。与云相比,边缘资源是硬件有限的,不能支持工作负载驱动的基础设施扩展。因此,Edge的资源分配和调度需要一个新的视角。现有的边缘调度研究假设,每当提出作业请求时,所有所需资源都是可用的。本文挑战了这一假设,因为并非来自云服务器的所有作业请求都可以在Edge节点上调度。因此,保证客户机(云服务器卸载作业)之间的公平性,同时考虑作业的优先级成为一项关键任务。本文提出了四种调度技术,第一种是朴素的先到先服务策略,并进一步提出了客户端公平、优先级公平和兼顾客户端和工作优先级公平的混合调度策略。在一个目标平台上,给出了三种不同情况下的评估,即均匀分布、随机分布和高斯分布。实验研究强调了与朴素策略相比,Edge节点上调度作业的低开销和分布。结果证实了混合策略的优越性能,并展示了公平调度程序用于边缘计算的可行性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Priority-based Fair Scheduling in Edge Computing
Scheduling is important in Edge computing. In contrast to the Cloud, Edge resources are hardware limited and cannot support workload-driven infrastructure scaling. Hence, resource allocation and scheduling for the Edge requires a fresh perspective. Existing Edge scheduling research assumes availability of all needed resources whenever a job request is made. This paper challenges that assumption, since not all job requests from a Cloud server can be scheduled on an Edge node. Thus, guaranteeing fairness among the clients (Cloud servers offloading jobs) while accounting for priorities of the jobs becomes a critical task. This paper presents four scheduling techniques, the first is a naive first come first serve strategy and further proposes three strategies, namely a client fair, priority fair, and hybrid that accounts for the fairness of both clients and job priorities. An evaluation on a target platform under three different scenarios, namely equal, random, and Gaussian job distributions is presented. The experimental studies highlight the low overheads and the distribution of scheduled jobs on the Edge node when compared to the naive strategy. The results confirm the superior performance of the hybrid strategy and showcase the feasibility of fair schedulers for Edge computing.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信