{"title":"从简单的包装模型理解复杂的物质","authors":"T. Aste, G. Delaney, T. Di Matteo","doi":"10.1117/12.759030","DOIUrl":null,"url":null,"abstract":"By pouring equal balls into a container one obtains disordered packings with fascinating properties which might shed light on several elusive properties of complex materials such as amorphous metals or colloids. In any real experiment with equal-sized spheres one cannot reach packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ) below the Random Loose Packing limit (RLP, ρ ~ 0.555) or above the Random Close Packing limit (RCP, ρ ~ 0.645) unless order is externally induced. What is happening at these two limits is an open unanswered question. In this paper we address this question by combining statistical geometry and statistical mechanics methods. Evidences of phase transitions occurring at the RLP and RCP limits are reported.","PeriodicalId":320411,"journal":{"name":"SPIE Micro + Nano Materials, Devices, and Applications","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Understanding complex matter from simple packing models\",\"authors\":\"T. Aste, G. Delaney, T. Di Matteo\",\"doi\":\"10.1117/12.759030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By pouring equal balls into a container one obtains disordered packings with fascinating properties which might shed light on several elusive properties of complex materials such as amorphous metals or colloids. In any real experiment with equal-sized spheres one cannot reach packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ) below the Random Loose Packing limit (RLP, ρ ~ 0.555) or above the Random Close Packing limit (RCP, ρ ~ 0.645) unless order is externally induced. What is happening at these two limits is an open unanswered question. In this paper we address this question by combining statistical geometry and statistical mechanics methods. Evidences of phase transitions occurring at the RLP and RCP limits are reported.\",\"PeriodicalId\":320411,\"journal\":{\"name\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-12-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Micro + Nano Materials, Devices, and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.759030\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Micro + Nano Materials, Devices, and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.759030","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Understanding complex matter from simple packing models
By pouring equal balls into a container one obtains disordered packings with fascinating properties which might shed light on several elusive properties of complex materials such as amorphous metals or colloids. In any real experiment with equal-sized spheres one cannot reach packing fractions (fraction of volume occupied by the spheres respect to the total volume, ρ) below the Random Loose Packing limit (RLP, ρ ~ 0.555) or above the Random Close Packing limit (RCP, ρ ~ 0.645) unless order is externally induced. What is happening at these two limits is an open unanswered question. In this paper we address this question by combining statistical geometry and statistical mechanics methods. Evidences of phase transitions occurring at the RLP and RCP limits are reported.