基于自组织神经网络的千年发展目标视觉跟踪

Peter Sarlin
{"title":"基于自组织神经网络的千年发展目标视觉跟踪","authors":"Peter Sarlin","doi":"10.1109/CIDM.2011.5949433","DOIUrl":null,"url":null,"abstract":"The Millennium Development Goals (MDGs) represent commitments to reduce poverty and hunger, and to tackle ill-health, gender inequality, lack of education, lack of access to clean water and environmental degradation by 2015. The eight goals of the Millennium Declaration are tracked using 21 benchmark targets, measured by 60 indicators. This paper explores whether the application of the Self-organizing map (SOM), a neural network-based projection and clustering technique, facilitates monitoring of the multidimensional MDGs. First, this paper presents a SOM model for visual benchmarking of countries and for visual analysis of the evolution of MDG indicators. Second, the SOM is paired with a geospatial dimension by mapping the clustering results on a geographic map. The results of this paper indicate that the SOM is a feasible tool for visual monitoring of MDG indicators.","PeriodicalId":211565,"journal":{"name":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","volume":" 28","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Visual tracking of the Millennium Development Goals with a Self-organizing neural network\",\"authors\":\"Peter Sarlin\",\"doi\":\"10.1109/CIDM.2011.5949433\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Millennium Development Goals (MDGs) represent commitments to reduce poverty and hunger, and to tackle ill-health, gender inequality, lack of education, lack of access to clean water and environmental degradation by 2015. The eight goals of the Millennium Declaration are tracked using 21 benchmark targets, measured by 60 indicators. This paper explores whether the application of the Self-organizing map (SOM), a neural network-based projection and clustering technique, facilitates monitoring of the multidimensional MDGs. First, this paper presents a SOM model for visual benchmarking of countries and for visual analysis of the evolution of MDG indicators. Second, the SOM is paired with a geospatial dimension by mapping the clustering results on a geographic map. The results of this paper indicate that the SOM is a feasible tool for visual monitoring of MDG indicators.\",\"PeriodicalId\":211565,\"journal\":{\"name\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"volume\":\" 28\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIDM.2011.5949433\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE Symposium on Computational Intelligence and Data Mining (CIDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIDM.2011.5949433","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

千年发展目标是承诺到2015年减少贫穷和饥饿,并解决健康不良、性别不平等、缺乏教育、无法获得清洁水和环境退化等问题。《千年宣言》的八项目标使用21个基准目标进行跟踪,用60个指标进行衡量。本文探讨了自组织地图(SOM)——一种基于神经网络的投影和聚类技术——的应用是否有助于对多维千年发展目标的监测。首先,本文提出了一个SOM模型,用于对各国进行可视化基准测试,并对千年发展目标指标的演变进行可视化分析。其次,通过将聚类结果映射到地理地图上,将SOM与地理空间维度配对。本文的研究结果表明,SOM是一种可行的千年发展目标指标可视化监测工具。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Visual tracking of the Millennium Development Goals with a Self-organizing neural network
The Millennium Development Goals (MDGs) represent commitments to reduce poverty and hunger, and to tackle ill-health, gender inequality, lack of education, lack of access to clean water and environmental degradation by 2015. The eight goals of the Millennium Declaration are tracked using 21 benchmark targets, measured by 60 indicators. This paper explores whether the application of the Self-organizing map (SOM), a neural network-based projection and clustering technique, facilitates monitoring of the multidimensional MDGs. First, this paper presents a SOM model for visual benchmarking of countries and for visual analysis of the evolution of MDG indicators. Second, the SOM is paired with a geospatial dimension by mapping the clustering results on a geographic map. The results of this paper indicate that the SOM is a feasible tool for visual monitoring of MDG indicators.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信