结合隔离森林和LSTM自编码器进行异常检测

Celvin Yota Priyanto, Hendry, H. Purnomo
{"title":"结合隔离森林和LSTM自编码器进行异常检测","authors":"Celvin Yota Priyanto, Hendry, H. Purnomo","doi":"10.1109/ICITech50181.2021.9590143","DOIUrl":null,"url":null,"abstract":"Land monitoring is important in agriculture. Early warning information regarding the land condition enable farmers to respond quickly when anomaly condition occures. However, identifying anomaly of land condition is not a simple task. In this research, a model of anomaly detection for land monitoring system is proposed. Raw data collected from land monitoring sensors is used as the dataset. Isolation Forest is used to transform the unlabeled data into labeled data. The labeled dataset is then used to create anomaly detection model using Long Short-Term Memory (LSTM) autoencoder. The experiments results show that the Isolation Forest has the potential to label data. The LSTM autoencoder has the accuracy 0.95 precision 0.96, recall 0.99 and flscore 0.97.","PeriodicalId":429669,"journal":{"name":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","volume":"62 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Combination of Isolation Forest and LSTM Autoencoder for Anomaly Detection\",\"authors\":\"Celvin Yota Priyanto, Hendry, H. Purnomo\",\"doi\":\"10.1109/ICITech50181.2021.9590143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Land monitoring is important in agriculture. Early warning information regarding the land condition enable farmers to respond quickly when anomaly condition occures. However, identifying anomaly of land condition is not a simple task. In this research, a model of anomaly detection for land monitoring system is proposed. Raw data collected from land monitoring sensors is used as the dataset. Isolation Forest is used to transform the unlabeled data into labeled data. The labeled dataset is then used to create anomaly detection model using Long Short-Term Memory (LSTM) autoencoder. The experiments results show that the Isolation Forest has the potential to label data. The LSTM autoencoder has the accuracy 0.95 precision 0.96, recall 0.99 and flscore 0.97.\",\"PeriodicalId\":429669,\"journal\":{\"name\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"volume\":\"62 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICITech50181.2021.9590143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 2nd International Conference on Innovative and Creative Information Technology (ICITech)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICITech50181.2021.9590143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

土地监测在农业中很重要。有关土地状况的早期预警信息使农民能够在异常情况发生时迅速作出反应。然而,识别土地状况异常并不是一项简单的任务。本文提出了一种用于土地监测系统的异常检测模型。从土地监测传感器收集的原始数据被用作数据集。隔离林用于将未标记数据转换为标记数据。然后将标记的数据集用于使用长短期记忆(LSTM)自编码器创建异常检测模型。实验结果表明,隔离森林具有标记数据的潜力。LSTM自编码器的准确率为0.95,精密度为0.96,召回率为0.99,flscore为0.97。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Combination of Isolation Forest and LSTM Autoencoder for Anomaly Detection
Land monitoring is important in agriculture. Early warning information regarding the land condition enable farmers to respond quickly when anomaly condition occures. However, identifying anomaly of land condition is not a simple task. In this research, a model of anomaly detection for land monitoring system is proposed. Raw data collected from land monitoring sensors is used as the dataset. Isolation Forest is used to transform the unlabeled data into labeled data. The labeled dataset is then used to create anomaly detection model using Long Short-Term Memory (LSTM) autoencoder. The experiments results show that the Isolation Forest has the potential to label data. The LSTM autoencoder has the accuracy 0.95 precision 0.96, recall 0.99 and flscore 0.97.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信