{"title":"基于DSP/深度学习的实时全频带语音增强方法","authors":"J. Valin","doi":"10.1109/MMSP.2018.8547084","DOIUrl":null,"url":null,"abstract":"Despite noise suppression being a mature area in signal processing, it remains highly dependent on fine tuning of estimator algorithms and parameters. In this paper, we demonstrate a hybrid DSP/deep learning approach to noise suppression. We focus strongly on keeping the complexity as low as possible, while still achieving high-quality enhanced speech. A deep recurrent neural network with four hidden layers is used to estimate ideal critical band gains, while a more traditional pitch filter attenuates noise between pitch harmonics. The approach achieves significantly higher quality than a traditional minimum mean squared error spectral estimator, while keeping the complexity low enough for real-time operation at 48 kHz on a low-power CPU.","PeriodicalId":137522,"journal":{"name":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","volume":"20 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"139","resultStr":"{\"title\":\"A Hybrid DSP/Deep Learning Approach to Real-Time Full-Band Speech Enhancement\",\"authors\":\"J. Valin\",\"doi\":\"10.1109/MMSP.2018.8547084\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite noise suppression being a mature area in signal processing, it remains highly dependent on fine tuning of estimator algorithms and parameters. In this paper, we demonstrate a hybrid DSP/deep learning approach to noise suppression. We focus strongly on keeping the complexity as low as possible, while still achieving high-quality enhanced speech. A deep recurrent neural network with four hidden layers is used to estimate ideal critical band gains, while a more traditional pitch filter attenuates noise between pitch harmonics. The approach achieves significantly higher quality than a traditional minimum mean squared error spectral estimator, while keeping the complexity low enough for real-time operation at 48 kHz on a low-power CPU.\",\"PeriodicalId\":137522,\"journal\":{\"name\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"volume\":\"20 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"139\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MMSP.2018.8547084\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 20th International Workshop on Multimedia Signal Processing (MMSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MMSP.2018.8547084","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Hybrid DSP/Deep Learning Approach to Real-Time Full-Band Speech Enhancement
Despite noise suppression being a mature area in signal processing, it remains highly dependent on fine tuning of estimator algorithms and parameters. In this paper, we demonstrate a hybrid DSP/deep learning approach to noise suppression. We focus strongly on keeping the complexity as low as possible, while still achieving high-quality enhanced speech. A deep recurrent neural network with four hidden layers is used to estimate ideal critical band gains, while a more traditional pitch filter attenuates noise between pitch harmonics. The approach achieves significantly higher quality than a traditional minimum mean squared error spectral estimator, while keeping the complexity low enough for real-time operation at 48 kHz on a low-power CPU.