弹性服务器基础设施中增强内容局部性的多模型预测

Juan M. Tirado, Daniel Higuero, Florin Isaila, J. Carretero
{"title":"弹性服务器基础设施中增强内容局部性的多模型预测","authors":"Juan M. Tirado, Daniel Higuero, Florin Isaila, J. Carretero","doi":"10.1109/HiPC.2011.6152728","DOIUrl":null,"url":null,"abstract":"Infrastructures serving on-line applications experience dynamic workload variations depending on diverse factors such as popularity, marketing, periodic patterns, fads, trends, events, etc. Some predictable factors such as trends, periodicity or scheduled events allow for proactive resource provisioning in order to meet fluctuations in workloads. However, proactive resource provisioning requires prediction models forecasting future workload patterns. This paper proposes a multi-model prediction approach, in which data are grouped into bins based on content locality, and an autoregressive prediction model is assigned to each locality-preserving bin. The prediction models are shown to be identified and fitted in a computationally efficient way. We demonstrate experimentally that our multi-model approach improves locality over the uni-model approach, while achieving efficient resource provisioning and preserving a high resource utilization and load balance.","PeriodicalId":122468,"journal":{"name":"2011 18th International Conference on High Performance Computing","volume":"61 7","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"25","resultStr":"{\"title\":\"Multi-model prediction for enhancing content locality in elastic server infrastructures\",\"authors\":\"Juan M. Tirado, Daniel Higuero, Florin Isaila, J. Carretero\",\"doi\":\"10.1109/HiPC.2011.6152728\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Infrastructures serving on-line applications experience dynamic workload variations depending on diverse factors such as popularity, marketing, periodic patterns, fads, trends, events, etc. Some predictable factors such as trends, periodicity or scheduled events allow for proactive resource provisioning in order to meet fluctuations in workloads. However, proactive resource provisioning requires prediction models forecasting future workload patterns. This paper proposes a multi-model prediction approach, in which data are grouped into bins based on content locality, and an autoregressive prediction model is assigned to each locality-preserving bin. The prediction models are shown to be identified and fitted in a computationally efficient way. We demonstrate experimentally that our multi-model approach improves locality over the uni-model approach, while achieving efficient resource provisioning and preserving a high resource utilization and load balance.\",\"PeriodicalId\":122468,\"journal\":{\"name\":\"2011 18th International Conference on High Performance Computing\",\"volume\":\"61 7\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"25\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 18th International Conference on High Performance Computing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HiPC.2011.6152728\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 18th International Conference on High Performance Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HiPC.2011.6152728","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 25

摘要

服务于在线应用程序的基础设施会经历动态的工作负载变化,这取决于不同的因素,如流行程度、市场营销、周期模式、时尚、趋势、事件等。一些可预测的因素(如趋势、周期性或计划中的事件)允许主动提供资源,以满足工作负载的波动。然而,主动资源供应需要预测模型来预测未来的工作负载模式。本文提出了一种多模型预测方法,该方法根据内容的局部性将数据分组到bin中,并为每个保持局部性的bin分配一个自回归预测模型。预测模型的识别和拟合在计算上是有效的。我们通过实验证明,我们的多模型方法比单模型方法提高了局部性,同时实现了有效的资源配置,并保持了高资源利用率和负载平衡。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Multi-model prediction for enhancing content locality in elastic server infrastructures
Infrastructures serving on-line applications experience dynamic workload variations depending on diverse factors such as popularity, marketing, periodic patterns, fads, trends, events, etc. Some predictable factors such as trends, periodicity or scheduled events allow for proactive resource provisioning in order to meet fluctuations in workloads. However, proactive resource provisioning requires prediction models forecasting future workload patterns. This paper proposes a multi-model prediction approach, in which data are grouped into bins based on content locality, and an autoregressive prediction model is assigned to each locality-preserving bin. The prediction models are shown to be identified and fitted in a computationally efficient way. We demonstrate experimentally that our multi-model approach improves locality over the uni-model approach, while achieving efficient resource provisioning and preserving a high resource utilization and load balance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信