几乎所有的经典定理都是直觉性的

P. Lescanne
{"title":"几乎所有的经典定理都是直觉性的","authors":"P. Lescanne","doi":"10.1051/ita/2022009","DOIUrl":null,"url":null,"abstract":"Canonical expressions represent the implicative propositions (i.e., the propositions with only implications) up-to renaming of variables. Using a Monte-Carlo approach, we explore the model of canonical expressions in order to confirm the paradox that says that asymptotically almost all classical theorems are intuitionistic. Actually we found that more than 96.6% of classical theorems are intuitionistic among propositions of size 100.","PeriodicalId":438841,"journal":{"name":"RAIRO Theor. Informatics Appl.","volume":"240 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Almost all Classical Theorems are Intuitionistic\",\"authors\":\"P. Lescanne\",\"doi\":\"10.1051/ita/2022009\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Canonical expressions represent the implicative propositions (i.e., the propositions with only implications) up-to renaming of variables. Using a Monte-Carlo approach, we explore the model of canonical expressions in order to confirm the paradox that says that asymptotically almost all classical theorems are intuitionistic. Actually we found that more than 96.6% of classical theorems are intuitionistic among propositions of size 100.\",\"PeriodicalId\":438841,\"journal\":{\"name\":\"RAIRO Theor. Informatics Appl.\",\"volume\":\"240 \",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"RAIRO Theor. Informatics Appl.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1051/ita/2022009\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"RAIRO Theor. Informatics Appl.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/ita/2022009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

规范表达式表示隐含命题(即,只有隐含的命题)直到变量的重命名。利用蒙特卡罗方法,我们探讨了规范表达式的模型,以证实悖论,即渐近几乎所有经典定理都是直觉性的。实际上,我们发现在100个大小的命题中,超过96.6%的经典定理是直观的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Almost all Classical Theorems are Intuitionistic
Canonical expressions represent the implicative propositions (i.e., the propositions with only implications) up-to renaming of variables. Using a Monte-Carlo approach, we explore the model of canonical expressions in order to confirm the paradox that says that asymptotically almost all classical theorems are intuitionistic. Actually we found that more than 96.6% of classical theorems are intuitionistic among propositions of size 100.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信