从医学文本中挖掘语义表示:贝叶斯方法

Patric Bino, Prakash, Shomona Gracia, Jacob Radhameena
{"title":"从医学文本中挖掘语义表示:贝叶斯方法","authors":"Patric Bino, Prakash, Shomona Gracia, Jacob Radhameena","doi":"10.1109/ICRTIT.2014.6996197","DOIUrl":null,"url":null,"abstract":"Machine learning is a subfield of artificial intelligence that deals with the exploration and construction of systems that can learn from data. Machine learning trains the computers to manage the critical situations via examining, self-training, inference by observation and previous experience. This paper provides an overview of the development of an efficient classifier that represents the semantics in medical data (Medline) using a Machine Learning (ML) perspective. In recent days people are more concerned about their health and explore ways to identify health related information. But the process of identifying the semantic representation for the medical terms is a difficult task. The main goal of our work was to identify the semantic representation for the medical abstracts in the Medline repository using Machine Learning and Natural Language Processing (NLP).","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"273 21-24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mining semantic representation from medical text: A Bayesian approach\",\"authors\":\"Patric Bino, Prakash, Shomona Gracia, Jacob Radhameena\",\"doi\":\"10.1109/ICRTIT.2014.6996197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is a subfield of artificial intelligence that deals with the exploration and construction of systems that can learn from data. Machine learning trains the computers to manage the critical situations via examining, self-training, inference by observation and previous experience. This paper provides an overview of the development of an efficient classifier that represents the semantics in medical data (Medline) using a Machine Learning (ML) perspective. In recent days people are more concerned about their health and explore ways to identify health related information. But the process of identifying the semantic representation for the medical terms is a difficult task. The main goal of our work was to identify the semantic representation for the medical abstracts in the Medline repository using Machine Learning and Natural Language Processing (NLP).\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"273 21-24\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

机器学习是人工智能的一个子领域,涉及探索和构建可以从数据中学习的系统。机器学习训练计算机通过检查、自我训练、观察推理和以前的经验来管理关键情况。本文概述了一种高效分类器的开发,该分类器使用机器学习(ML)的视角来表示医疗数据(Medline)中的语义。近年来,人们越来越关注自己的健康,并探索识别健康相关信息的方法。但是识别医学术语的语义表示是一项艰巨的任务。我们工作的主要目标是使用机器学习和自然语言处理(NLP)来识别Medline存储库中医学摘要的语义表示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Mining semantic representation from medical text: A Bayesian approach
Machine learning is a subfield of artificial intelligence that deals with the exploration and construction of systems that can learn from data. Machine learning trains the computers to manage the critical situations via examining, self-training, inference by observation and previous experience. This paper provides an overview of the development of an efficient classifier that represents the semantics in medical data (Medline) using a Machine Learning (ML) perspective. In recent days people are more concerned about their health and explore ways to identify health related information. But the process of identifying the semantic representation for the medical terms is a difficult task. The main goal of our work was to identify the semantic representation for the medical abstracts in the Medline repository using Machine Learning and Natural Language Processing (NLP).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信