Patric Bino, Prakash, Shomona Gracia, Jacob Radhameena
{"title":"从医学文本中挖掘语义表示:贝叶斯方法","authors":"Patric Bino, Prakash, Shomona Gracia, Jacob Radhameena","doi":"10.1109/ICRTIT.2014.6996197","DOIUrl":null,"url":null,"abstract":"Machine learning is a subfield of artificial intelligence that deals with the exploration and construction of systems that can learn from data. Machine learning trains the computers to manage the critical situations via examining, self-training, inference by observation and previous experience. This paper provides an overview of the development of an efficient classifier that represents the semantics in medical data (Medline) using a Machine Learning (ML) perspective. In recent days people are more concerned about their health and explore ways to identify health related information. But the process of identifying the semantic representation for the medical terms is a difficult task. The main goal of our work was to identify the semantic representation for the medical abstracts in the Medline repository using Machine Learning and Natural Language Processing (NLP).","PeriodicalId":422275,"journal":{"name":"2014 International Conference on Recent Trends in Information Technology","volume":"273 21-24","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Mining semantic representation from medical text: A Bayesian approach\",\"authors\":\"Patric Bino, Prakash, Shomona Gracia, Jacob Radhameena\",\"doi\":\"10.1109/ICRTIT.2014.6996197\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Machine learning is a subfield of artificial intelligence that deals with the exploration and construction of systems that can learn from data. Machine learning trains the computers to manage the critical situations via examining, self-training, inference by observation and previous experience. This paper provides an overview of the development of an efficient classifier that represents the semantics in medical data (Medline) using a Machine Learning (ML) perspective. In recent days people are more concerned about their health and explore ways to identify health related information. But the process of identifying the semantic representation for the medical terms is a difficult task. The main goal of our work was to identify the semantic representation for the medical abstracts in the Medline repository using Machine Learning and Natural Language Processing (NLP).\",\"PeriodicalId\":422275,\"journal\":{\"name\":\"2014 International Conference on Recent Trends in Information Technology\",\"volume\":\"273 21-24\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Recent Trends in Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICRTIT.2014.6996197\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Recent Trends in Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICRTIT.2014.6996197","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mining semantic representation from medical text: A Bayesian approach
Machine learning is a subfield of artificial intelligence that deals with the exploration and construction of systems that can learn from data. Machine learning trains the computers to manage the critical situations via examining, self-training, inference by observation and previous experience. This paper provides an overview of the development of an efficient classifier that represents the semantics in medical data (Medline) using a Machine Learning (ML) perspective. In recent days people are more concerned about their health and explore ways to identify health related information. But the process of identifying the semantic representation for the medical terms is a difficult task. The main goal of our work was to identify the semantic representation for the medical abstracts in the Medline repository using Machine Learning and Natural Language Processing (NLP).