基于边缘分割和小波系数统计特性的图像处理检测

B. Jeong, I. Eom
{"title":"基于边缘分割和小波系数统计特性的图像处理检测","authors":"B. Jeong, I. Eom","doi":"10.1109/ELINFOCOM.2014.6914358","DOIUrl":null,"url":null,"abstract":"Forged digital images have been increased quickly for malicious purposes with the development of the image-editing software. As a consequence, the image forensics has been necessary to grant the authenticity of digital image. In this paper, we proposed a novel the image manipulation detection in the wavelet domain. We analyze retouching methods and the corresponding feature vectors are extracted. The experiment results show that the proposed method provides very effective performance.","PeriodicalId":360207,"journal":{"name":"2014 International Conference on Electronics, Information and Communications (ICEIC)","volume":"44 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Image manipulation detection using Edge-based segmentation and statistical property of wavelet coefficients\",\"authors\":\"B. Jeong, I. Eom\",\"doi\":\"10.1109/ELINFOCOM.2014.6914358\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Forged digital images have been increased quickly for malicious purposes with the development of the image-editing software. As a consequence, the image forensics has been necessary to grant the authenticity of digital image. In this paper, we proposed a novel the image manipulation detection in the wavelet domain. We analyze retouching methods and the corresponding feature vectors are extracted. The experiment results show that the proposed method provides very effective performance.\",\"PeriodicalId\":360207,\"journal\":{\"name\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"volume\":\"44 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 International Conference on Electronics, Information and Communications (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ELINFOCOM.2014.6914358\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 International Conference on Electronics, Information and Communications (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ELINFOCOM.2014.6914358","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着图像编辑软件的发展,用于恶意目的的伪造数字图像数量迅速增加。因此,为了保证数字图像的真实性,必须进行图像取证。本文提出了一种新的小波域图像处理检测方法。分析了图像的修图方法,提取了相应的特征向量。实验结果表明,该方法具有良好的性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Image manipulation detection using Edge-based segmentation and statistical property of wavelet coefficients
Forged digital images have been increased quickly for malicious purposes with the development of the image-editing software. As a consequence, the image forensics has been necessary to grant the authenticity of digital image. In this paper, we proposed a novel the image manipulation detection in the wavelet domain. We analyze retouching methods and the corresponding feature vectors are extracted. The experiment results show that the proposed method provides very effective performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信