计算学习理论应用于离散时间细胞神经网络

W. Utschick, J. Nossek
{"title":"计算学习理论应用于离散时间细胞神经网络","authors":"W. Utschick, J. Nossek","doi":"10.1109/CNNA.1994.381691","DOIUrl":null,"url":null,"abstract":"The theory of probably approximately correct (PAC) learning is applied to discrete-time cellular neural networks (DTCNNS). The Vapnik-Chervonenkis dimension of DTCNN is determined. Considering two different operation modes of the network, an upper bound of the sample size for a reliable generalization of DTCNN architecture is given.<<ETX>>","PeriodicalId":248898,"journal":{"name":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","volume":"47 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1994-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computational learning theory applied to discrete-time cellular neural networks\",\"authors\":\"W. Utschick, J. Nossek\",\"doi\":\"10.1109/CNNA.1994.381691\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The theory of probably approximately correct (PAC) learning is applied to discrete-time cellular neural networks (DTCNNS). The Vapnik-Chervonenkis dimension of DTCNN is determined. Considering two different operation modes of the network, an upper bound of the sample size for a reliable generalization of DTCNN architecture is given.<<ETX>>\",\"PeriodicalId\":248898,\"journal\":{\"name\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"volume\":\"47 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CNNA.1994.381691\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Third IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CNNA.1994.381691","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

将可能近似正确(PAC)学习理论应用于离散细胞神经网络(DTCNNS)。确定了DTCNN的Vapnik-Chervonenkis维数。考虑到网络的两种不同运行模式,给出了可靠推广DTCNN结构的样本容量上限。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Computational learning theory applied to discrete-time cellular neural networks
The theory of probably approximately correct (PAC) learning is applied to discrete-time cellular neural networks (DTCNNS). The Vapnik-Chervonenkis dimension of DTCNN is determined. Considering two different operation modes of the network, an upper bound of the sample size for a reliable generalization of DTCNN architecture is given.<>
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信