使用条件随机场从扫描文档中提取书目元素

Manabu Ohta, Takayuki Yakushi, A. Takasu
{"title":"使用条件随机场从扫描文档中提取书目元素","authors":"Manabu Ohta, Takayuki Yakushi, A. Takasu","doi":"10.1109/ICDIM.2008.4746745","DOIUrl":null,"url":null,"abstract":"Bibliographic databases are indispensable to digital libraries for academic articles. However, extracting bibliographic elements from printed documents requires a lot of human intervention; it is not cost-effective, even when using various document image-processing techniques such as optical character recognition (OCR). In this paper, we propose an automatic bibliographic element extraction method for academic articles scanned with OCR markup. The proposed method first labels text blocks as predetermined bibliographic elements and then further labels the characters in each labeled text block if necessary. The second labeling enables us to extract each authorpsilas name from the authorspsila text block. The method uses conditional random fields (CRF) for labeling both text blocks and the characters in them. We applied the method to Japanese academic articles. The experiments showed that the proposed text block labeling correctly extracted all the predefined bibliographic elements from more than 97% of the articles; the proposed character labeling also correctly extracted all the author name strings from more than 99% of the authorspsila text blocks in Japanese.","PeriodicalId":415013,"journal":{"name":"2008 Third International Conference on Digital Information Management","volume":"130 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Bibliographic element extraction from scanned documents using conditional random fields\",\"authors\":\"Manabu Ohta, Takayuki Yakushi, A. Takasu\",\"doi\":\"10.1109/ICDIM.2008.4746745\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Bibliographic databases are indispensable to digital libraries for academic articles. However, extracting bibliographic elements from printed documents requires a lot of human intervention; it is not cost-effective, even when using various document image-processing techniques such as optical character recognition (OCR). In this paper, we propose an automatic bibliographic element extraction method for academic articles scanned with OCR markup. The proposed method first labels text blocks as predetermined bibliographic elements and then further labels the characters in each labeled text block if necessary. The second labeling enables us to extract each authorpsilas name from the authorspsila text block. The method uses conditional random fields (CRF) for labeling both text blocks and the characters in them. We applied the method to Japanese academic articles. The experiments showed that the proposed text block labeling correctly extracted all the predefined bibliographic elements from more than 97% of the articles; the proposed character labeling also correctly extracted all the author name strings from more than 99% of the authorspsila text blocks in Japanese.\",\"PeriodicalId\":415013,\"journal\":{\"name\":\"2008 Third International Conference on Digital Information Management\",\"volume\":\"130 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Third International Conference on Digital Information Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2008.4746745\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Third International Conference on Digital Information Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2008.4746745","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

书目数据库是数字图书馆学术论文的重要组成部分。然而,从印刷文档中提取书目元素需要大量的人为干预;即使使用各种文档图像处理技术(如光学字符识别(OCR)),也不具有成本效益。本文提出了一种基于OCR标记扫描的学术文章书目元素自动提取方法。所提出的方法首先将文本块标记为预定的书目元素,然后在必要时进一步标记每个标记文本块中的字符。第二个标签使我们能够从authorspsila文本块中提取每个作者的名字。该方法使用条件随机场(CRF)来标记文本块及其中的字符。我们将这种方法应用于日本的学术文章。实验表明,本文提出的文本块标注方法正确提取了97%以上的文章的全部预定义书目元素;所提出的字符标注也正确地从超过99%的日文作者姓名文本块中提取了所有的作者姓名字符串。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Bibliographic element extraction from scanned documents using conditional random fields
Bibliographic databases are indispensable to digital libraries for academic articles. However, extracting bibliographic elements from printed documents requires a lot of human intervention; it is not cost-effective, even when using various document image-processing techniques such as optical character recognition (OCR). In this paper, we propose an automatic bibliographic element extraction method for academic articles scanned with OCR markup. The proposed method first labels text blocks as predetermined bibliographic elements and then further labels the characters in each labeled text block if necessary. The second labeling enables us to extract each authorpsilas name from the authorspsila text block. The method uses conditional random fields (CRF) for labeling both text blocks and the characters in them. We applied the method to Japanese academic articles. The experiments showed that the proposed text block labeling correctly extracted all the predefined bibliographic elements from more than 97% of the articles; the proposed character labeling also correctly extracted all the author name strings from more than 99% of the authorspsila text blocks in Japanese.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信