用最小原理求解线性丢番图方程和联立线性丢番图方程

Ming Xiong
{"title":"用最小原理求解线性丢番图方程和联立线性丢番图方程","authors":"Ming Xiong","doi":"10.12988/imf.2022.912318","DOIUrl":null,"url":null,"abstract":"The all current methods of solving linear Diophantine equation and system of linear Diophantine equations have three shortcomings. Based on function thinking we put forward minimum principles to solve them, so that we can solve Generalized Chinese Remainder Problem easily. In order to discriminate accuracy of other methods, we propose basic solution system, the concept of transformation matrix and the concept of equivalence of basic solution systems for homogeneous linear indeterminate equations. This paper is also a classic example that mathematics problems for Post-graduate Students can be solved by only using middle school mathematics. We correct the misunderstanding for Cramer’s rule in mathematics circles too.","PeriodicalId":107214,"journal":{"name":"International Mathematical Forum","volume":"111 2","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Solving linear Diophantine equation and simultaneous linear Diophantine equations with minimum principles\",\"authors\":\"Ming Xiong\",\"doi\":\"10.12988/imf.2022.912318\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The all current methods of solving linear Diophantine equation and system of linear Diophantine equations have three shortcomings. Based on function thinking we put forward minimum principles to solve them, so that we can solve Generalized Chinese Remainder Problem easily. In order to discriminate accuracy of other methods, we propose basic solution system, the concept of transformation matrix and the concept of equivalence of basic solution systems for homogeneous linear indeterminate equations. This paper is also a classic example that mathematics problems for Post-graduate Students can be solved by only using middle school mathematics. We correct the misunderstanding for Cramer’s rule in mathematics circles too.\",\"PeriodicalId\":107214,\"journal\":{\"name\":\"International Mathematical Forum\",\"volume\":\"111 2\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Mathematical Forum\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12988/imf.2022.912318\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Mathematical Forum","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12988/imf.2022.912318","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前所有求解线性丢番图方程和线性丢番图方程组的方法都有三个缺点。基于函数思想,提出了求解广义中文剩余问题的最小原则,从而使广义中文剩余问题的求解更加简便。为了区分其他方法的准确性,我们提出了齐次线性不定方程的基本解系统、变换矩阵的概念和基本解系统的等价概念。本文也是仅用中学数学就能解决研究生数学问题的一个经典例子。我们也纠正了数学界对克拉默法则的误解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Solving linear Diophantine equation and simultaneous linear Diophantine equations with minimum principles
The all current methods of solving linear Diophantine equation and system of linear Diophantine equations have three shortcomings. Based on function thinking we put forward minimum principles to solve them, so that we can solve Generalized Chinese Remainder Problem easily. In order to discriminate accuracy of other methods, we propose basic solution system, the concept of transformation matrix and the concept of equivalence of basic solution systems for homogeneous linear indeterminate equations. This paper is also a classic example that mathematics problems for Post-graduate Students can be solved by only using middle school mathematics. We correct the misunderstanding for Cramer’s rule in mathematics circles too.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信