{"title":"基于相位相关的低复杂度密集运动估计","authors":"V. Argyriou, T. Vlachos","doi":"10.1109/ICDSP.2009.5201114","DOIUrl":null,"url":null,"abstract":"We propose a low-complexity dense motion estimation scheme particularly attractive for real-time video applications. Our scheme is based on overlapped block-based motion estimation using phase correlation at critical pixel locations. These form an irregularly sampled grid capturing salient motion features of a scene. The dense vector field is obtained by applying normalized convolution on the irregular grid. Our experiments show that our scheme provides reliable sub-pixel accuracy motion vectors corresponding to actual scene motion, outperforms differential and phase-based methods and yields comparable performance to more complex and time consuming robust motion estimation techniques.","PeriodicalId":409669,"journal":{"name":"2009 16th International Conference on Digital Signal Processing","volume":"47 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Low complexity dense motion estimation using phase correlation\",\"authors\":\"V. Argyriou, T. Vlachos\",\"doi\":\"10.1109/ICDSP.2009.5201114\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We propose a low-complexity dense motion estimation scheme particularly attractive for real-time video applications. Our scheme is based on overlapped block-based motion estimation using phase correlation at critical pixel locations. These form an irregularly sampled grid capturing salient motion features of a scene. The dense vector field is obtained by applying normalized convolution on the irregular grid. Our experiments show that our scheme provides reliable sub-pixel accuracy motion vectors corresponding to actual scene motion, outperforms differential and phase-based methods and yields comparable performance to more complex and time consuming robust motion estimation techniques.\",\"PeriodicalId\":409669,\"journal\":{\"name\":\"2009 16th International Conference on Digital Signal Processing\",\"volume\":\"47 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 16th International Conference on Digital Signal Processing\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDSP.2009.5201114\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 16th International Conference on Digital Signal Processing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDSP.2009.5201114","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Low complexity dense motion estimation using phase correlation
We propose a low-complexity dense motion estimation scheme particularly attractive for real-time video applications. Our scheme is based on overlapped block-based motion estimation using phase correlation at critical pixel locations. These form an irregularly sampled grid capturing salient motion features of a scene. The dense vector field is obtained by applying normalized convolution on the irregular grid. Our experiments show that our scheme provides reliable sub-pixel accuracy motion vectors corresponding to actual scene motion, outperforms differential and phase-based methods and yields comparable performance to more complex and time consuming robust motion estimation techniques.