海报:保持ABS边缘辅助在线联邦学习的训练效率和准确性

Jiayu Wang, Zehua Guo, Sen Liu, Yuanqing Xia
{"title":"海报:保持ABS边缘辅助在线联邦学习的训练效率和准确性","authors":"Jiayu Wang, Zehua Guo, Sen Liu, Yuanqing Xia","doi":"10.1109/ICNP49622.2020.9259386","DOIUrl":null,"url":null,"abstract":"This paper proposes Adaptive Batch Sizing (ABS) for online federated learning. ABS is an iteration process-efficient solution that adaptively adjusts batch size of the training process at edge nodes. Preliminary results show that ABS maintains training efficiency and accuracy, compared with existing iteration round-efficient solutions.","PeriodicalId":233856,"journal":{"name":"2020 IEEE 28th International Conference on Network Protocols (ICNP)","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-10-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Poster: Maintaining Training Efficiency and Accuracy for Edge-assisted Online Federated Learning with ABS\",\"authors\":\"Jiayu Wang, Zehua Guo, Sen Liu, Yuanqing Xia\",\"doi\":\"10.1109/ICNP49622.2020.9259386\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes Adaptive Batch Sizing (ABS) for online federated learning. ABS is an iteration process-efficient solution that adaptively adjusts batch size of the training process at edge nodes. Preliminary results show that ABS maintains training efficiency and accuracy, compared with existing iteration round-efficient solutions.\",\"PeriodicalId\":233856,\"journal\":{\"name\":\"2020 IEEE 28th International Conference on Network Protocols (ICNP)\",\"volume\":\"8 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-10-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE 28th International Conference on Network Protocols (ICNP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNP49622.2020.9259386\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE 28th International Conference on Network Protocols (ICNP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNP49622.2020.9259386","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种用于在线联邦学习的自适应批大小(ABS)算法。ABS是一种迭代过程高效的解决方案,可以自适应地调整边缘节点上训练过程的批大小。初步结果表明,与现有的迭代循环效率解决方案相比,ABS保持了训练效率和精度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Poster: Maintaining Training Efficiency and Accuracy for Edge-assisted Online Federated Learning with ABS
This paper proposes Adaptive Batch Sizing (ABS) for online federated learning. ABS is an iteration process-efficient solution that adaptively adjusts batch size of the training process at edge nodes. Preliminary results show that ABS maintains training efficiency and accuracy, compared with existing iteration round-efficient solutions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信