深度学习网络中深度估计的自适应遍历算法

Uthra Kunathur Thikshaja, Anand Paul, Seungmin Rho, Deblina Bhattacharjee
{"title":"深度学习网络中深度估计的自适应遍历算法","authors":"Uthra Kunathur Thikshaja, Anand Paul, Seungmin Rho, Deblina Bhattacharjee","doi":"10.1109/PLATCON.2016.7456783","DOIUrl":null,"url":null,"abstract":"Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).","PeriodicalId":247342,"journal":{"name":"2016 International Conference on Platform Technology and Service (PlatCon)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Adaptive Transcursive Algorithm for Depth Estimation in Deep Learning Networks\",\"authors\":\"Uthra Kunathur Thikshaja, Anand Paul, Seungmin Rho, Deblina Bhattacharjee\",\"doi\":\"10.1109/PLATCON.2016.7456783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).\",\"PeriodicalId\":247342,\"journal\":{\"name\":\"2016 International Conference on Platform Technology and Service (PlatCon)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Platform Technology and Service (PlatCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLATCON.2016.7456783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Platform Technology and Service (PlatCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLATCON.2016.7456783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

神经网络(NN)或人工神经网络(ANN)的深度估计是一个完整而复杂的过程。在本文中,我们提出了一种使用函数变换结合递归性质的方法,以自适应,横贯算法来表示多层感知器网络深度学习中使用的反向传播概念。每个函数都可以用来表示神经网络中使用的隐藏层,并且可以使它们处理处理的复杂部分。每当出现不期望的输出时,我们就转换(修改)函数,直到获得期望的输出。我们有一个算法,该算法使用横贯模型来使用多层感知器网络(MPN)创建深度学习概念的解释。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Adaptive Transcursive Algorithm for Depth Estimation in Deep Learning Networks
Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信