{"title":"深度学习网络中深度估计的自适应遍历算法","authors":"Uthra Kunathur Thikshaja, Anand Paul, Seungmin Rho, Deblina Bhattacharjee","doi":"10.1109/PLATCON.2016.7456783","DOIUrl":null,"url":null,"abstract":"Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).","PeriodicalId":247342,"journal":{"name":"2016 International Conference on Platform Technology and Service (PlatCon)","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An Adaptive Transcursive Algorithm for Depth Estimation in Deep Learning Networks\",\"authors\":\"Uthra Kunathur Thikshaja, Anand Paul, Seungmin Rho, Deblina Bhattacharjee\",\"doi\":\"10.1109/PLATCON.2016.7456783\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).\",\"PeriodicalId\":247342,\"journal\":{\"name\":\"2016 International Conference on Platform Technology and Service (PlatCon)\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 International Conference on Platform Technology and Service (PlatCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PLATCON.2016.7456783\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 International Conference on Platform Technology and Service (PlatCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PLATCON.2016.7456783","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An Adaptive Transcursive Algorithm for Depth Estimation in Deep Learning Networks
Estimation of depth in a Neural Network (NN) or Artificial Neural Network (ANN) is an integral as well as complicated process. In this article, we propose a way of using the transformation of functions combined with recursive nature to have an adaptive, transcursive algorithm to represent the backpropagation concept used in deep learning for a Multilayer Perceptron Network. Each function can be used to represent a hidden layer used in the neural network and they can be made to handle a complex part of the processing. Whenever an undesirable output occurs, we transform (modify) the functions until a desirable output is obtained. We have an algorithm that uses the transcursive model to create an interpretation of the concept of deep learning using multilayer perceptron network (MPN).