基于标签循环的深度神经转换器的x线片后位到正位分类的域适应

Dongwon Park, Minjun Kim, Hyungjin Kim, Jang-Sik Lee, S. Chun
{"title":"基于标签循环的深度神经转换器的x线片后位到正位分类的域适应","authors":"Dongwon Park, Minjun Kim, Hyungjin Kim, Jang-Sik Lee, S. Chun","doi":"10.1109/ICEIC57457.2023.10049919","DOIUrl":null,"url":null,"abstract":"Deep neural network trained with massive labeled dataset has shown impressive performance in multiple disease classification tasks for chest X-ray radiograph (CXR). However, different imaging protocols even for the same disease such as posteroanterior (PA) and anteroposterior (AP) CXR often lead to domain gap, causing significant performance degradation and requiring more images with painstaking labeling. We propose a novel domain adaptation scheme via deep neural converter (DNC) in the scenario of having labeled PA and unlabeled AP; converting labeled PA into AP with label recycling and pseudo-labeling unlabeled AP. To overcome no labeled AP data, our proposed method exploits DNC to convert labeled PA CXR into AP CXR with label recycling as well as pseudo labeler for unlabeled AP CXR.","PeriodicalId":373752,"journal":{"name":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"2013 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Domain adaptation from posteroanterior to anteroposterior X-ray radiograph classification via deep neural converter with label recycling\",\"authors\":\"Dongwon Park, Minjun Kim, Hyungjin Kim, Jang-Sik Lee, S. Chun\",\"doi\":\"10.1109/ICEIC57457.2023.10049919\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Deep neural network trained with massive labeled dataset has shown impressive performance in multiple disease classification tasks for chest X-ray radiograph (CXR). However, different imaging protocols even for the same disease such as posteroanterior (PA) and anteroposterior (AP) CXR often lead to domain gap, causing significant performance degradation and requiring more images with painstaking labeling. We propose a novel domain adaptation scheme via deep neural converter (DNC) in the scenario of having labeled PA and unlabeled AP; converting labeled PA into AP with label recycling and pseudo-labeling unlabeled AP. To overcome no labeled AP data, our proposed method exploits DNC to convert labeled PA CXR into AP CXR with label recycling as well as pseudo labeler for unlabeled AP CXR.\",\"PeriodicalId\":373752,\"journal\":{\"name\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"2013 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2023 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC57457.2023.10049919\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2023 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC57457.2023.10049919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

经过大规模标记数据集训练的深度神经网络在胸部x光片(CXR)的多种疾病分类任务中表现出令人印象深刻的性能。然而,对于相同的疾病,不同的成像方案,如后前位(PA)和正后位(AP) CXR,往往会导致区域间隙,导致显著的性能下降,需要更多的图像和艰苦的标记。提出了一种基于深度神经转换器(DNC)的具有标记PA和未标记AP的域自适应方案;通过标签回收和伪标记未标记AP将标记PA转换为AP。为了克服无标记AP数据,我们提出的方法利用DNC将标记PA CXR转换为带有标签回收的AP CXR,以及未标记AP CXR的伪标记器。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Domain adaptation from posteroanterior to anteroposterior X-ray radiograph classification via deep neural converter with label recycling
Deep neural network trained with massive labeled dataset has shown impressive performance in multiple disease classification tasks for chest X-ray radiograph (CXR). However, different imaging protocols even for the same disease such as posteroanterior (PA) and anteroposterior (AP) CXR often lead to domain gap, causing significant performance degradation and requiring more images with painstaking labeling. We propose a novel domain adaptation scheme via deep neural converter (DNC) in the scenario of having labeled PA and unlabeled AP; converting labeled PA into AP with label recycling and pseudo-labeling unlabeled AP. To overcome no labeled AP data, our proposed method exploits DNC to convert labeled PA CXR into AP CXR with label recycling as well as pseudo labeler for unlabeled AP CXR.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信