{"title":"一种新的k分数阶积分算子及其应用","authors":"Hina Ilyas, G. Farid","doi":"10.52280/pujm.2021.531104","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new k-fractional integral oper-ators involving\nparameters γ, λ analogous to the Riemann-Liouville k-fractional integral. This new\nfractional integral operators dependent on an exponential function of arbitrary exponent in\nthe kernel of the integral. We prove, certain basic properties such as semi group property,\ncommu-tative law and boundedness for new fractional integral operators. Also, we discuss\nChebyshev type inequalities and some k-fractional integral in-equalities corresponding to\nthe new k-fractional integral operators","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"50 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New k-Fractional Integral Operators and their Applications\",\"authors\":\"Hina Ilyas, G. Farid\",\"doi\":\"10.52280/pujm.2021.531104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new k-fractional integral oper-ators involving\\nparameters γ, λ analogous to the Riemann-Liouville k-fractional integral. This new\\nfractional integral operators dependent on an exponential function of arbitrary exponent in\\nthe kernel of the integral. We prove, certain basic properties such as semi group property,\\ncommu-tative law and boundedness for new fractional integral operators. Also, we discuss\\nChebyshev type inequalities and some k-fractional integral in-equalities corresponding to\\nthe new k-fractional integral operators\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"50 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2021.531104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.531104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A New k-Fractional Integral Operators and their Applications
In this paper, we present a new k-fractional integral oper-ators involving
parameters γ, λ analogous to the Riemann-Liouville k-fractional integral. This new
fractional integral operators dependent on an exponential function of arbitrary exponent in
the kernel of the integral. We prove, certain basic properties such as semi group property,
commu-tative law and boundedness for new fractional integral operators. Also, we discuss
Chebyshev type inequalities and some k-fractional integral in-equalities corresponding to
the new k-fractional integral operators