一种新的k分数阶积分算子及其应用

Hina Ilyas, G. Farid
{"title":"一种新的k分数阶积分算子及其应用","authors":"Hina Ilyas, G. Farid","doi":"10.52280/pujm.2021.531104","DOIUrl":null,"url":null,"abstract":"In this paper, we present a new k-fractional integral oper-ators involving\nparameters γ, λ analogous to the Riemann-Liouville k-fractional integral. This new\nfractional integral operators dependent on an exponential function of arbitrary exponent in\nthe kernel of the integral. We prove, certain basic properties such as semi group property,\ncommu-tative law and boundedness for new fractional integral operators. Also, we discuss\nChebyshev type inequalities and some k-fractional integral in-equalities corresponding to\nthe new k-fractional integral operators","PeriodicalId":205373,"journal":{"name":"Punjab University Journal of Mathematics","volume":"50 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A New k-Fractional Integral Operators and their Applications\",\"authors\":\"Hina Ilyas, G. Farid\",\"doi\":\"10.52280/pujm.2021.531104\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we present a new k-fractional integral oper-ators involving\\nparameters γ, λ analogous to the Riemann-Liouville k-fractional integral. This new\\nfractional integral operators dependent on an exponential function of arbitrary exponent in\\nthe kernel of the integral. We prove, certain basic properties such as semi group property,\\ncommu-tative law and boundedness for new fractional integral operators. Also, we discuss\\nChebyshev type inequalities and some k-fractional integral in-equalities corresponding to\\nthe new k-fractional integral operators\",\"PeriodicalId\":205373,\"journal\":{\"name\":\"Punjab University Journal of Mathematics\",\"volume\":\"50 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Punjab University Journal of Mathematics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.52280/pujm.2021.531104\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Punjab University Journal of Mathematics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.52280/pujm.2021.531104","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文给出了一种新的包含参数γ, λ的k分数积分算子,类似于Riemann-Liouville k分数积分算子。这个新的分数阶积分算子依赖于积分核中任意指数的指数函数。证明了一类新的分数阶积分算子的半群性质、交换律和有界性等基本性质。此外,我们还讨论了schebyshev型不等式和与新的k分数积分算子相对应的若干k分数积分不等式
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A New k-Fractional Integral Operators and their Applications
In this paper, we present a new k-fractional integral oper-ators involving parameters γ, λ analogous to the Riemann-Liouville k-fractional integral. This new fractional integral operators dependent on an exponential function of arbitrary exponent in the kernel of the integral. We prove, certain basic properties such as semi group property, commu-tative law and boundedness for new fractional integral operators. Also, we discuss Chebyshev type inequalities and some k-fractional integral in-equalities corresponding to the new k-fractional integral operators
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信