非凸非光滑问题的一种超越全局Lipschitz梯度连续性的Bregman随机方法

Qingsong Wang, Deren Han
{"title":"非凸非光滑问题的一种超越全局Lipschitz梯度连续性的Bregman随机方法","authors":"Qingsong Wang, Deren Han","doi":"10.1080/10556788.2023.2189717","DOIUrl":null,"url":null,"abstract":"ABSTRACT In this paper, we consider solving a broad class of large-scale nonconvex and nonsmooth minimization problems by a Bregman proximal stochastic gradient (BPSG) algorithm. The objective function of the minimization problem is the composition of a differentiable and a nondifferentiable function, and the differentiable part does not admit a global Lipschitz continuous gradient. Under some suitable conditions, the subsequential convergence of the proposed algorithm is established. And under expectation conditions with the Kurdyka-Łojasiewicz (KL) property, we also prove that the proposed method converges globally. We also apply the BPSG algorithm to solve sparse nonnegative matrix factorization (NMF), symmetric NMF via non-symmetric relaxation, and matrix completion problems under different kernel generating distances, and numerically compare it with other algorithms. The results demonstrate the robustness and effectiveness of the proposed algorithm.","PeriodicalId":124811,"journal":{"name":"Optimization Methods and Software","volume":"42 4","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Bregman stochastic method for nonconvex nonsmooth problem beyond global Lipschitz gradient continuity\",\"authors\":\"Qingsong Wang, Deren Han\",\"doi\":\"10.1080/10556788.2023.2189717\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"ABSTRACT In this paper, we consider solving a broad class of large-scale nonconvex and nonsmooth minimization problems by a Bregman proximal stochastic gradient (BPSG) algorithm. The objective function of the minimization problem is the composition of a differentiable and a nondifferentiable function, and the differentiable part does not admit a global Lipschitz continuous gradient. Under some suitable conditions, the subsequential convergence of the proposed algorithm is established. And under expectation conditions with the Kurdyka-Łojasiewicz (KL) property, we also prove that the proposed method converges globally. We also apply the BPSG algorithm to solve sparse nonnegative matrix factorization (NMF), symmetric NMF via non-symmetric relaxation, and matrix completion problems under different kernel generating distances, and numerically compare it with other algorithms. The results demonstrate the robustness and effectiveness of the proposed algorithm.\",\"PeriodicalId\":124811,\"journal\":{\"name\":\"Optimization Methods and Software\",\"volume\":\"42 4\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-05-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optimization Methods and Software\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/10556788.2023.2189717\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optimization Methods and Software","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/10556788.2023.2189717","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要本文考虑用Bregman近端随机梯度(BPSG)算法求解一类大规模非凸非光滑最小化问题。最小化问题的目标函数是一个可微函数和一个不可微函数的组合,可微部分不允许全局Lipschitz连续梯度。在一定的条件下,证明了该算法的次收敛性。并在具有Kurdyka-Łojasiewicz (KL)性质的期望条件下,证明了该方法的全局收敛性。将BPSG算法应用于求解稀疏非负矩阵分解(NMF)、非对称松弛对称NMF以及不同核生成距离下的矩阵补全问题,并与其他算法进行数值比较。实验结果证明了该算法的鲁棒性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Bregman stochastic method for nonconvex nonsmooth problem beyond global Lipschitz gradient continuity
ABSTRACT In this paper, we consider solving a broad class of large-scale nonconvex and nonsmooth minimization problems by a Bregman proximal stochastic gradient (BPSG) algorithm. The objective function of the minimization problem is the composition of a differentiable and a nondifferentiable function, and the differentiable part does not admit a global Lipschitz continuous gradient. Under some suitable conditions, the subsequential convergence of the proposed algorithm is established. And under expectation conditions with the Kurdyka-Łojasiewicz (KL) property, we also prove that the proposed method converges globally. We also apply the BPSG algorithm to solve sparse nonnegative matrix factorization (NMF), symmetric NMF via non-symmetric relaxation, and matrix completion problems under different kernel generating distances, and numerically compare it with other algorithms. The results demonstrate the robustness and effectiveness of the proposed algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信