三维网格球面参数化的基本原理

C. Gotsman, X. Gu, A. Sheffer
{"title":"三维网格球面参数化的基本原理","authors":"C. Gotsman, X. Gu, A. Sheffer","doi":"10.1145/1201775.882276","DOIUrl":null,"url":null,"abstract":"Parameterization of 3D mesh data is important for many graphics applications, in particular for texture mapping, remeshing and morphing. Closed manifold genus-0 meshes are topologically equivalent to a sphere, hence this is the natural parameter domain for them. Parameterizing a triangle mesh onto the sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical triangles induced by the mesh connectivity are not too distorted and do not overlap. Satisfying the non-overlapping requirement is the most difficult and critical component of this process. We describe a generalization of the method of barycentric coordinates for planar parameterization which solves the spherical parameterization problem, prove its correctness by establishing a connection to spectral graph theory and show how to compute these parameterizations.","PeriodicalId":314969,"journal":{"name":"ACM SIGGRAPH 2003 Papers","volume":"12 5","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2003-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"327","resultStr":"{\"title\":\"Fundamentals of spherical parameterization for 3D meshes\",\"authors\":\"C. Gotsman, X. Gu, A. Sheffer\",\"doi\":\"10.1145/1201775.882276\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Parameterization of 3D mesh data is important for many graphics applications, in particular for texture mapping, remeshing and morphing. Closed manifold genus-0 meshes are topologically equivalent to a sphere, hence this is the natural parameter domain for them. Parameterizing a triangle mesh onto the sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical triangles induced by the mesh connectivity are not too distorted and do not overlap. Satisfying the non-overlapping requirement is the most difficult and critical component of this process. We describe a generalization of the method of barycentric coordinates for planar parameterization which solves the spherical parameterization problem, prove its correctness by establishing a connection to spectral graph theory and show how to compute these parameterizations.\",\"PeriodicalId\":314969,\"journal\":{\"name\":\"ACM SIGGRAPH 2003 Papers\",\"volume\":\"12 5\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2003-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"327\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM SIGGRAPH 2003 Papers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1201775.882276\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM SIGGRAPH 2003 Papers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1201775.882276","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 327

摘要

三维网格数据的参数化对于许多图形应用非常重要,特别是对于纹理映射、重网格和变形。闭流形属0网格在拓扑上等价于球面,因此这是它们的自然参数域。将三角形网格参数化到球体上意味着在单位球体上为每个网格顶点分配一个3D位置,这样由网格连接引起的球面三角形就不会太扭曲,也不会重叠。满足非重叠需求是这个过程中最困难和最关键的部分。介绍了一种用于平面参数化的质心坐标法的推广方法,该方法解决了球面参数化问题,通过与谱图理论的联系证明了该方法的正确性,并给出了如何计算这些参数化的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Fundamentals of spherical parameterization for 3D meshes
Parameterization of 3D mesh data is important for many graphics applications, in particular for texture mapping, remeshing and morphing. Closed manifold genus-0 meshes are topologically equivalent to a sphere, hence this is the natural parameter domain for them. Parameterizing a triangle mesh onto the sphere means assigning a 3D position on the unit sphere to each of the mesh vertices, such that the spherical triangles induced by the mesh connectivity are not too distorted and do not overlap. Satisfying the non-overlapping requirement is the most difficult and critical component of this process. We describe a generalization of the method of barycentric coordinates for planar parameterization which solves the spherical parameterization problem, prove its correctness by establishing a connection to spectral graph theory and show how to compute these parameterizations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信