太多的亚当无所事事——一天就走了一步

Endri, R. Hale
{"title":"太多的亚当无所事事——一天就走了一步","authors":"Endri, R. Hale","doi":"10.1179/175709311X13166801334037","DOIUrl":null,"url":null,"abstract":"AbstractCDISC is rapidly becoming adopted as the data standard for clinical trials and submissions of clinical trial data to the FDA. Within CDISC, ADaM datasets are an integral part of clinical study analysis and require significant data derivation to fulfill the needs of TLF provision. Can the creation of ADaM datasets be automated? Yes! This paper proposes an Excel-driven solution which greatly improves the efficiency and accuracy of ADaM dataset creation by defining ADaM dataset structure, complex variable derivation, and data checks within Excel. Using a library of SAS macros, the definitions then drive the automated production of SAS scripts which produce analysis ready datasets that meet the ADaM specification and which can be validated in accordance with regulatory requirements. Additionally, data check reports are created for Data Management to speed up the data cleaning process.","PeriodicalId":253012,"journal":{"name":"Pharmaceutical Programming","volume":"28 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Much ADaM about nothing — a proc away in a day\",\"authors\":\"Endri, R. Hale\",\"doi\":\"10.1179/175709311X13166801334037\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"AbstractCDISC is rapidly becoming adopted as the data standard for clinical trials and submissions of clinical trial data to the FDA. Within CDISC, ADaM datasets are an integral part of clinical study analysis and require significant data derivation to fulfill the needs of TLF provision. Can the creation of ADaM datasets be automated? Yes! This paper proposes an Excel-driven solution which greatly improves the efficiency and accuracy of ADaM dataset creation by defining ADaM dataset structure, complex variable derivation, and data checks within Excel. Using a library of SAS macros, the definitions then drive the automated production of SAS scripts which produce analysis ready datasets that meet the ADaM specification and which can be validated in accordance with regulatory requirements. Additionally, data check reports are created for Data Management to speed up the data cleaning process.\",\"PeriodicalId\":253012,\"journal\":{\"name\":\"Pharmaceutical Programming\",\"volume\":\"28 11\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pharmaceutical Programming\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1179/175709311X13166801334037\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pharmaceutical Programming","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1179/175709311X13166801334037","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

摘要cdisc正迅速成为临床试验和向FDA提交临床试验数据的数据标准。在CDISC中,ADaM数据集是临床研究分析的一个组成部分,需要大量的数据派生来满足TLF提供的需求。ADaM数据集的创建可以自动化吗?是的!本文提出了一种Excel驱动的解决方案,通过在Excel中定义ADaM数据集结构、复杂变量推导和数据检查,大大提高了ADaM数据集创建的效率和准确性。然后,使用SAS宏库,这些定义驱动SAS脚本的自动化生产,生成符合ADaM规范的可供分析的数据集,并且可以根据法规要求进行验证。此外,还为data Management创建数据检查报告,以加快数据清理过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Much ADaM about nothing — a proc away in a day
AbstractCDISC is rapidly becoming adopted as the data standard for clinical trials and submissions of clinical trial data to the FDA. Within CDISC, ADaM datasets are an integral part of clinical study analysis and require significant data derivation to fulfill the needs of TLF provision. Can the creation of ADaM datasets be automated? Yes! This paper proposes an Excel-driven solution which greatly improves the efficiency and accuracy of ADaM dataset creation by defining ADaM dataset structure, complex variable derivation, and data checks within Excel. Using a library of SAS macros, the definitions then drive the automated production of SAS scripts which produce analysis ready datasets that meet the ADaM specification and which can be validated in accordance with regulatory requirements. Additionally, data check reports are created for Data Management to speed up the data cleaning process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信