基于神经网络的随机V2V LOS/NLOS模型在环硬件测试

C. Stadler, Xenia Flamm, T. Gruber, Anatoli Djanatliev, R. German, D. Eckhoff
{"title":"基于神经网络的随机V2V LOS/NLOS模型在环硬件测试","authors":"C. Stadler, Xenia Flamm, T. Gruber, Anatoli Djanatliev, R. German, D. Eckhoff","doi":"10.1109/VNC.2017.8275597","DOIUrl":null,"url":null,"abstract":"Many of the envisioned applications based on Vehicle-to-Vehicle (V2V) communication require a certain amount of information received from other road users. Urban scenarios pose a particular challenge to the communication quality for Vehicular Ad-Hoc Networks (VANETs) as obstacles such as buildings, foliage, and infrastructure attenuate the signal. These challenges have to be taken into account already at the development stage of applications. In this paper we introduce a wall-clock time test approach which is capable of emulating the availability of information depending on the topology of an urban scenario. To this end, we make use of a neural network to predict LOS/NLOS probabilities which can then in turn be used to predict packet success rates. Our method achieves a high prediction accuracy that enables the realistic testing of a device-under-test in terms of communication and computational load.","PeriodicalId":101592,"journal":{"name":"2017 IEEE Vehicular Networking Conference (VNC)","volume":"70 9","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A stochastic V2V LOS/NLOS model using neural networks for hardware-in-the-loop testing\",\"authors\":\"C. Stadler, Xenia Flamm, T. Gruber, Anatoli Djanatliev, R. German, D. Eckhoff\",\"doi\":\"10.1109/VNC.2017.8275597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many of the envisioned applications based on Vehicle-to-Vehicle (V2V) communication require a certain amount of information received from other road users. Urban scenarios pose a particular challenge to the communication quality for Vehicular Ad-Hoc Networks (VANETs) as obstacles such as buildings, foliage, and infrastructure attenuate the signal. These challenges have to be taken into account already at the development stage of applications. In this paper we introduce a wall-clock time test approach which is capable of emulating the availability of information depending on the topology of an urban scenario. To this end, we make use of a neural network to predict LOS/NLOS probabilities which can then in turn be used to predict packet success rates. Our method achieves a high prediction accuracy that enables the realistic testing of a device-under-test in terms of communication and computational load.\",\"PeriodicalId\":101592,\"journal\":{\"name\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"volume\":\"70 9\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 IEEE Vehicular Networking Conference (VNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VNC.2017.8275597\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 IEEE Vehicular Networking Conference (VNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VNC.2017.8275597","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

许多基于车对车(V2V)通信的应用程序都需要从其他道路使用者那里接收一定数量的信息。城市场景对车载自组织网络(vanet)的通信质量提出了特别的挑战,因为建筑物、树叶和基础设施等障碍物会减弱信号。必须在应用程序开发阶段就考虑到这些挑战。在本文中,我们介绍了一种壁钟时间测试方法,该方法能够根据城市场景的拓扑结构模拟信息的可用性。为此,我们利用神经网络来预测LOS/NLOS概率,然后可以反过来用于预测数据包成功率。我们的方法达到了很高的预测精度,能够在通信和计算负载方面对被测设备进行实际测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A stochastic V2V LOS/NLOS model using neural networks for hardware-in-the-loop testing
Many of the envisioned applications based on Vehicle-to-Vehicle (V2V) communication require a certain amount of information received from other road users. Urban scenarios pose a particular challenge to the communication quality for Vehicular Ad-Hoc Networks (VANETs) as obstacles such as buildings, foliage, and infrastructure attenuate the signal. These challenges have to be taken into account already at the development stage of applications. In this paper we introduce a wall-clock time test approach which is capable of emulating the availability of information depending on the topology of an urban scenario. To this end, we make use of a neural network to predict LOS/NLOS probabilities which can then in turn be used to predict packet success rates. Our method achieves a high prediction accuracy that enables the realistic testing of a device-under-test in terms of communication and computational load.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信