{"title":"提高机器人系统的可靠性——故障树综合在运输系统分析中的应用经验","authors":"Nidhal Mahmud","doi":"10.4018/IJRAT.2015070103","DOIUrl":null,"url":null,"abstract":"The use of robotics systems is increasingly widespread and spans a variety of application areas. From manufacturing, to surgeries, to chemical, these systems can be required to perform difficult, dangerous and critical tasks. The nature of such tasks places high demands on the dependability of robotics systems. Fault tree analysis is among the most often used dependability assessment techniques in various domains of robotics. However, there is still a lack of adjustment methods that can efficiently cope with the sequential dependencies among the components of such systems. In this paper, the authors first introduce some relevant techniques to analyze the dependability of robotics systems. Thereafter, an experience from research projects such as MAENAD (European automotive project investigating development of dependable Fully Electric Vehicles) is presented; emphasis is put on a novel approach to synthesizing fault trees from the components and that is suitable for modern high-technology robotics. Finally, the benefits of the approach are highlighted by using a fault-tolerant case study.","PeriodicalId":249760,"journal":{"name":"Int. J. Robotics Appl. Technol.","volume":"47 12","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Dependability of Robotics Systems, Experience from Application of Fault Tree Synthesis to Analysis of Transport Systems\",\"authors\":\"Nidhal Mahmud\",\"doi\":\"10.4018/IJRAT.2015070103\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The use of robotics systems is increasingly widespread and spans a variety of application areas. From manufacturing, to surgeries, to chemical, these systems can be required to perform difficult, dangerous and critical tasks. The nature of such tasks places high demands on the dependability of robotics systems. Fault tree analysis is among the most often used dependability assessment techniques in various domains of robotics. However, there is still a lack of adjustment methods that can efficiently cope with the sequential dependencies among the components of such systems. In this paper, the authors first introduce some relevant techniques to analyze the dependability of robotics systems. Thereafter, an experience from research projects such as MAENAD (European automotive project investigating development of dependable Fully Electric Vehicles) is presented; emphasis is put on a novel approach to synthesizing fault trees from the components and that is suitable for modern high-technology robotics. Finally, the benefits of the approach are highlighted by using a fault-tolerant case study.\",\"PeriodicalId\":249760,\"journal\":{\"name\":\"Int. J. Robotics Appl. Technol.\",\"volume\":\"47 12\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-07-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Robotics Appl. Technol.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4018/IJRAT.2015070103\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Robotics Appl. Technol.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4018/IJRAT.2015070103","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improving Dependability of Robotics Systems, Experience from Application of Fault Tree Synthesis to Analysis of Transport Systems
The use of robotics systems is increasingly widespread and spans a variety of application areas. From manufacturing, to surgeries, to chemical, these systems can be required to perform difficult, dangerous and critical tasks. The nature of such tasks places high demands on the dependability of robotics systems. Fault tree analysis is among the most often used dependability assessment techniques in various domains of robotics. However, there is still a lack of adjustment methods that can efficiently cope with the sequential dependencies among the components of such systems. In this paper, the authors first introduce some relevant techniques to analyze the dependability of robotics systems. Thereafter, an experience from research projects such as MAENAD (European automotive project investigating development of dependable Fully Electric Vehicles) is presented; emphasis is put on a novel approach to synthesizing fault trees from the components and that is suitable for modern high-technology robotics. Finally, the benefits of the approach are highlighted by using a fault-tolerant case study.