素幂模广义多项式商二元阈值序列的线性复杂度

Lianhua Wang, Xiaoni Du
{"title":"素幂模广义多项式商二元阈值序列的线性复杂度","authors":"Lianhua Wang, Xiaoni Du","doi":"10.1142/s0129054120500264","DOIUrl":null,"url":null,"abstract":"In this paper, firstly we extend the polynomial quotient modulo an odd prime p to its general case with modulo pr and r ≥ 1. From the new quotient proposed, we define a class of pr+1-periodic binar...","PeriodicalId":192109,"journal":{"name":"Int. J. Found. Comput. Sci.","volume":"11 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-08-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Complexity of Binary Threshold Sequences Derived from Generalized Polynomial Quotient with Prime-Power Modulus\",\"authors\":\"Lianhua Wang, Xiaoni Du\",\"doi\":\"10.1142/s0129054120500264\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, firstly we extend the polynomial quotient modulo an odd prime p to its general case with modulo pr and r ≥ 1. From the new quotient proposed, we define a class of pr+1-periodic binar...\",\"PeriodicalId\":192109,\"journal\":{\"name\":\"Int. J. Found. Comput. Sci.\",\"volume\":\"11 8\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-08-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Found. Comput. Sci.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0129054120500264\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Found. Comput. Sci.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129054120500264","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文首先将多项式商模奇素数p推广到模pr且r≥1的一般情况。根据所提出的新商,我们定义了一类pr+1周期的二元矩阵。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Linear Complexity of Binary Threshold Sequences Derived from Generalized Polynomial Quotient with Prime-Power Modulus
In this paper, firstly we extend the polynomial quotient modulo an odd prime p to its general case with modulo pr and r ≥ 1. From the new quotient proposed, we define a class of pr+1-periodic binar...
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信