工业数据分析中缺失数据的处理

Lisa Ehrlinger, Thomas Grubinger, B. Varga, Mario Pichler, T. Natschläger, Jürgen Zeindl
{"title":"工业数据分析中缺失数据的处理","authors":"Lisa Ehrlinger, Thomas Grubinger, B. Varga, Mario Pichler, T. Natschläger, Jürgen Zeindl","doi":"10.1109/ICDIM.2018.8846984","DOIUrl":null,"url":null,"abstract":"With the advent of Industry 4.0, many companies aim at analyzing historically collected or operative transaction data. Despite the availability of large amounts of data, particular missing values can introduce bias or preclude the use of specific data analytics methods. Historically, a lot of research into missing data comes from the social sciences, especially with respect to survey data, whereas little research work deals with industrial missing data. In this paper, we (1) describe challenges that occur with missing data in the context of industrial data analytics, and (2) present an approach for handling missing data in industrial databases, which has been applied at voestalpine Stahl GmbH. In addition, we have evaluated different methods to impute missing values in our application data.","PeriodicalId":120884,"journal":{"name":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","volume":"12 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"Treating Missing Data in Industrial Data Analytics\",\"authors\":\"Lisa Ehrlinger, Thomas Grubinger, B. Varga, Mario Pichler, T. Natschläger, Jürgen Zeindl\",\"doi\":\"10.1109/ICDIM.2018.8846984\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the advent of Industry 4.0, many companies aim at analyzing historically collected or operative transaction data. Despite the availability of large amounts of data, particular missing values can introduce bias or preclude the use of specific data analytics methods. Historically, a lot of research into missing data comes from the social sciences, especially with respect to survey data, whereas little research work deals with industrial missing data. In this paper, we (1) describe challenges that occur with missing data in the context of industrial data analytics, and (2) present an approach for handling missing data in industrial databases, which has been applied at voestalpine Stahl GmbH. In addition, we have evaluated different methods to impute missing values in our application data.\",\"PeriodicalId\":120884,\"journal\":{\"name\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"volume\":\"12 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 Thirteenth International Conference on Digital Information Management (ICDIM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICDIM.2018.8846984\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 Thirteenth International Conference on Digital Information Management (ICDIM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICDIM.2018.8846984","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

随着工业4.0的到来,许多公司的目标是分析历史收集或操作交易数据。尽管有大量数据可用,但特定的缺失值可能会引入偏见或妨碍特定数据分析方法的使用。从历史上看,很多关于缺失数据的研究来自社会科学,特别是关于调查数据,而很少有研究工作涉及工业缺失数据。在本文中,我们(1)描述了在工业数据分析背景下丢失数据所带来的挑战,(2)提出了一种处理工业数据库中丢失数据的方法,该方法已在奥钢联斯塔尔有限公司得到应用。此外,我们还评估了在应用程序数据中计算缺失值的不同方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Treating Missing Data in Industrial Data Analytics
With the advent of Industry 4.0, many companies aim at analyzing historically collected or operative transaction data. Despite the availability of large amounts of data, particular missing values can introduce bias or preclude the use of specific data analytics methods. Historically, a lot of research into missing data comes from the social sciences, especially with respect to survey data, whereas little research work deals with industrial missing data. In this paper, we (1) describe challenges that occur with missing data in the context of industrial data analytics, and (2) present an approach for handling missing data in industrial databases, which has been applied at voestalpine Stahl GmbH. In addition, we have evaluated different methods to impute missing values in our application data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信