单应性估计的无监督损失函数分析

Nivesh Gadipudi, I. Elamvazuthi, Cheng-Kai Lu, S. Paramasivam, R. Jegadeeshwaran
{"title":"单应性估计的无监督损失函数分析","authors":"Nivesh Gadipudi, I. Elamvazuthi, Cheng-Kai Lu, S. Paramasivam, R. Jegadeeshwaran","doi":"10.1109/ICIAS49414.2021.9642689","DOIUrl":null,"url":null,"abstract":"Neural networks proved their ability in complex classification and regression problems using labeled data. Recent trends have shown the impressive performance of neural networks in more complex problems like estimating ego-motion and homography tasks. Due to complexity and time consumption for labeling data, researchers tend to exhibit their attentiveness towards unsupervised data-based learning. However, there are no standard loss functions used for image reconstruction and less attention is drawn towards the loss functions than the end to end network architectures. In this paper, we carefully analyze and evaluate the two most commonly used loss functions for the homography estimation task.","PeriodicalId":212635,"journal":{"name":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Analysis of Unsupervised Loss Functions for Homography Estimation\",\"authors\":\"Nivesh Gadipudi, I. Elamvazuthi, Cheng-Kai Lu, S. Paramasivam, R. Jegadeeshwaran\",\"doi\":\"10.1109/ICIAS49414.2021.9642689\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Neural networks proved their ability in complex classification and regression problems using labeled data. Recent trends have shown the impressive performance of neural networks in more complex problems like estimating ego-motion and homography tasks. Due to complexity and time consumption for labeling data, researchers tend to exhibit their attentiveness towards unsupervised data-based learning. However, there are no standard loss functions used for image reconstruction and less attention is drawn towards the loss functions than the end to end network architectures. In this paper, we carefully analyze and evaluate the two most commonly used loss functions for the homography estimation task.\",\"PeriodicalId\":212635,\"journal\":{\"name\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICIAS49414.2021.9642689\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 8th International Conference on Intelligent and Advanced Systems (ICIAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICIAS49414.2021.9642689","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

神经网络在使用标记数据的复杂分类和回归问题中证明了其能力。最近的趋势表明,神经网络在更复杂的问题上的表现令人印象深刻,比如估计自我运动和单应性任务。由于标注数据的复杂性和耗时,研究人员倾向于关注基于无监督数据的学习。然而,目前还没有用于图像重建的标准损失函数,并且相对于端到端网络架构,人们对损失函数的关注较少。在本文中,我们仔细地分析和评估了用于单应性估计任务的两种最常用的损失函数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Analysis of Unsupervised Loss Functions for Homography Estimation
Neural networks proved their ability in complex classification and regression problems using labeled data. Recent trends have shown the impressive performance of neural networks in more complex problems like estimating ego-motion and homography tasks. Due to complexity and time consumption for labeling data, researchers tend to exhibit their attentiveness towards unsupervised data-based learning. However, there are no standard loss functions used for image reconstruction and less attention is drawn towards the loss functions than the end to end network architectures. In this paper, we carefully analyze and evaluate the two most commonly used loss functions for the homography estimation task.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信