利用电子游戏检测康复过程中上肢运动的无标记动作捕捉系统

Kate McNamara, A. P. Bó, A. McKittrick, G. Tornatore, S. Laracy, Mathilde R. Desselle
{"title":"利用电子游戏检测康复过程中上肢运动的无标记动作捕捉系统","authors":"Kate McNamara, A. P. Bó, A. McKittrick, G. Tornatore, S. Laracy, Mathilde R. Desselle","doi":"10.1109/SEGAH54908.2022.9978581","DOIUrl":null,"url":null,"abstract":"This paper presents a method that analyzes the frequency and duration of upper limb movement during rehabilitation using video games. In particular, an algorithm based on markerless motion capture employs a video recorded from behind the user to segment and classify elbow flexion and extension and shoulder abduction and rotation. The proposed method was evaluated in a study involving participants during burn rehabilitation. Within the implemented protocol, participants used two video games, namely Beatsaber when using an Oculus Quest virtual reality headset and Wii Sports when using a Nintendo Wii. The results demonstrate the feasibility to employ markerless motion capture in the clinical environment. Limitations of this method were also highlighted.","PeriodicalId":252517,"journal":{"name":"2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH)","volume":"108 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Markerless Motion Capture System to Detect Upper Limb Movement during Rehabilitation using Video Games\",\"authors\":\"Kate McNamara, A. P. Bó, A. McKittrick, G. Tornatore, S. Laracy, Mathilde R. Desselle\",\"doi\":\"10.1109/SEGAH54908.2022.9978581\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a method that analyzes the frequency and duration of upper limb movement during rehabilitation using video games. In particular, an algorithm based on markerless motion capture employs a video recorded from behind the user to segment and classify elbow flexion and extension and shoulder abduction and rotation. The proposed method was evaluated in a study involving participants during burn rehabilitation. Within the implemented protocol, participants used two video games, namely Beatsaber when using an Oculus Quest virtual reality headset and Wii Sports when using a Nintendo Wii. The results demonstrate the feasibility to employ markerless motion capture in the clinical environment. Limitations of this method were also highlighted.\",\"PeriodicalId\":252517,\"journal\":{\"name\":\"2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH)\",\"volume\":\"108 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-08-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SEGAH54908.2022.9978581\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 IEEE 10th International Conference on Serious Games and Applications for Health(SeGAH)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SEGAH54908.2022.9978581","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种利用电子游戏分析康复过程中上肢运动频率和持续时间的方法。特别是,基于无标记动作捕捉的算法采用从用户身后录制的视频来分割和分类肘关节屈伸和肩部外展和旋转。在一项涉及烧伤康复参与者的研究中,对所提出的方法进行了评估。在实施的协议中,参与者使用两个视频游戏,即使用Oculus Quest虚拟现实耳机时使用《Beatsaber》,使用任天堂Wii时使用《Wii Sports》。结果表明,在临床环境中应用无标记动作捕捉是可行的。同时也强调了该方法的局限性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Markerless Motion Capture System to Detect Upper Limb Movement during Rehabilitation using Video Games
This paper presents a method that analyzes the frequency and duration of upper limb movement during rehabilitation using video games. In particular, an algorithm based on markerless motion capture employs a video recorded from behind the user to segment and classify elbow flexion and extension and shoulder abduction and rotation. The proposed method was evaluated in a study involving participants during burn rehabilitation. Within the implemented protocol, participants used two video games, namely Beatsaber when using an Oculus Quest virtual reality headset and Wii Sports when using a Nintendo Wii. The results demonstrate the feasibility to employ markerless motion capture in the clinical environment. Limitations of this method were also highlighted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信