自动驾驶车辆感知误差建模

M. Sigl, C. Schütz, Sebastian Wagner, D. Watzenig
{"title":"自动驾驶车辆感知误差建模","authors":"M. Sigl, C. Schütz, Sebastian Wagner, D. Watzenig","doi":"10.1109/VTC2021-Spring51267.2021.9448823","DOIUrl":null,"url":null,"abstract":"The assessment of automated driving relies increasingly on scenario-based virtual tests to achieve sufficient test coverage. Scenarios are generally based on ground truth information. Therefore, it is necessary to reproduce the view of the environment of the automated vehicle as it is seen by the autonomous driving function in the simulation. Typically, this view is erroneous compared to the ground truth due to sensor errors. This paper presents a novel approach to cluster, identify and finally to reproduce sensor errors by maneuver-dependent statistical models for the detection of other traffic objects. Errors are classified by their static and dynamic influences and incorporated into individual error models. These are evaluated in a final step based on real driving data.","PeriodicalId":194840,"journal":{"name":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","volume":"84 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling Perception Errors of Automated Vehicles\",\"authors\":\"M. Sigl, C. Schütz, Sebastian Wagner, D. Watzenig\",\"doi\":\"10.1109/VTC2021-Spring51267.2021.9448823\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The assessment of automated driving relies increasingly on scenario-based virtual tests to achieve sufficient test coverage. Scenarios are generally based on ground truth information. Therefore, it is necessary to reproduce the view of the environment of the automated vehicle as it is seen by the autonomous driving function in the simulation. Typically, this view is erroneous compared to the ground truth due to sensor errors. This paper presents a novel approach to cluster, identify and finally to reproduce sensor errors by maneuver-dependent statistical models for the detection of other traffic objects. Errors are classified by their static and dynamic influences and incorporated into individual error models. These are evaluated in a final step based on real driving data.\",\"PeriodicalId\":194840,\"journal\":{\"name\":\"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)\",\"volume\":\"84 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448823\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 93rd Vehicular Technology Conference (VTC2021-Spring)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VTC2021-Spring51267.2021.9448823","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

自动驾驶的评估越来越依赖于基于场景的虚拟测试,以实现足够的测试覆盖率。场景通常基于地面真实信息。因此,有必要再现仿真中自动驾驶功能所看到的自动驾驶车辆的环境视图。通常,由于传感器的误差,这种观点与地面事实相比是错误的。本文提出了一种新的方法,通过机动相关的统计模型来聚类、识别并最终再现传感器误差,用于检测其他交通目标。误差按其静态和动态影响进行分类,并纳入单独的误差模型。最后一步是根据实际驾驶数据进行评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Modeling Perception Errors of Automated Vehicles
The assessment of automated driving relies increasingly on scenario-based virtual tests to achieve sufficient test coverage. Scenarios are generally based on ground truth information. Therefore, it is necessary to reproduce the view of the environment of the automated vehicle as it is seen by the autonomous driving function in the simulation. Typically, this view is erroneous compared to the ground truth due to sensor errors. This paper presents a novel approach to cluster, identify and finally to reproduce sensor errors by maneuver-dependent statistical models for the detection of other traffic objects. Errors are classified by their static and dynamic influences and incorporated into individual error models. These are evaluated in a final step based on real driving data.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信