二元分数高斯噪声的几何研究

J. Lefèvre, N. L. Bihan, P. Amblard
{"title":"二元分数高斯噪声的几何研究","authors":"J. Lefèvre, N. L. Bihan, P. Amblard","doi":"10.1109/SSP.2018.8450737","DOIUrl":null,"url":null,"abstract":"We study the stochastic properties of the bivariate fractional Gaussian noise based on a polarization spectral analysis. The originality of the approach consist in the particular attention given to geometric features, achieved by the use of spectral quantities named Stokes parameters. Explicit expressions for these parameters are provided for the bivariate fractional noise. A special attention is given to the notion of degree of polarization, which allows to provide the synthesis of the fractional Gaussian noise as the sum of polarized and unpolarized processes.","PeriodicalId":330528,"journal":{"name":"2018 IEEE Statistical Signal Processing Workshop (SSP)","volume":"31 3","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Geometrical Study of the Bivariate Fractional Gaussian Noise\",\"authors\":\"J. Lefèvre, N. L. Bihan, P. Amblard\",\"doi\":\"10.1109/SSP.2018.8450737\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We study the stochastic properties of the bivariate fractional Gaussian noise based on a polarization spectral analysis. The originality of the approach consist in the particular attention given to geometric features, achieved by the use of spectral quantities named Stokes parameters. Explicit expressions for these parameters are provided for the bivariate fractional noise. A special attention is given to the notion of degree of polarization, which allows to provide the synthesis of the fractional Gaussian noise as the sum of polarized and unpolarized processes.\",\"PeriodicalId\":330528,\"journal\":{\"name\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"volume\":\"31 3\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE Statistical Signal Processing Workshop (SSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SSP.2018.8450737\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE Statistical Signal Processing Workshop (SSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SSP.2018.8450737","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

基于偏振谱分析,研究了二元分数高斯噪声的随机性质。该方法的独创性在于对几何特征的特别关注,通过使用称为Stokes参数的光谱量来实现。对于二元分数噪声,给出了这些参数的显式表达式。特别注意的是极化度的概念,它允许提供分数高斯噪声的合成作为极化和非极化过程的和。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Geometrical Study of the Bivariate Fractional Gaussian Noise
We study the stochastic properties of the bivariate fractional Gaussian noise based on a polarization spectral analysis. The originality of the approach consist in the particular attention given to geometric features, achieved by the use of spectral quantities named Stokes parameters. Explicit expressions for these parameters are provided for the bivariate fractional noise. A special attention is given to the notion of degree of polarization, which allows to provide the synthesis of the fractional Gaussian noise as the sum of polarized and unpolarized processes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信